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1 Introduction

Is the financial market more or less efficient when uncertainty level is high? In this pa-

per, we explore information-choice based models to provide an alternative perspective.1 In

these models, investors have limited information processing capacity (Sims, 2003), and mar-

ket efficiency varies with investors’ information acquisition decisions — more information

acquisition, higher market efficiency.

Relevant literature has not directly addressed this question. Indeed, existing theories

have ambiguous predictions on whether higher uncertainty is associated with more or less

information acquisition (Van Nieuwerburgh and Veldkamp, 2010), and extant empirical evi-

dence is mixed.2

We aim to make theoretical and empirical contributions along this line of inquiry. The-

oretically, we propose an information-choice model with three key novel features. The first

is that different firms impose persistently different information processing costs on investors.

Intuitively, a young pharmaceutical firm should require more information processing costs

from investors, as opposed to an established retailer. Yet, an approach typically taken in the

existing literature is to assume homogeneous costs across firms (Biao, maybe some literature

as you mentioned to me).

The second, and the key feature of the model, is that firm-level information process-

ing costs are related to uncertainty. Specifically, these costs mainly vary with firm-level

intrinsic uncertainty, rather than with temporal changes in uncertainty. We term this fea-

ture the “Sticky Information Costs” (SIC) hypothesis, which has been largely overlooked in

the literature, despite its intuitive appeal and importance in driving investors’ information

acquisition decisions facing uncertainty.3

To demonstrate the the SIC hypothesis, we consider two specific firms: Regeneron

Pharmaceuticals Inc. (NASDAQ:REGN), a pharmaceutical company known for its cutting-

edge innovations in biotech and pharmaceuticals, and Walmart Inc. (NYSE:WMT), an

American brick & mortar retail chain with a long-running and straightforward business

1In models featuring investors with full-information rational expectation (FIRE), the market stays fully efficient
despite objective uncertainty variations, both across firms and over time.

2Existing empirical studies find that investors appear to pay more attention to information when uncertainty is
high, supporting the benefit channel (Bonsall et al., 2020; Benamar et al., 2021). Fuster et al. (2022); Conlon et al.
(2018) find evidence in survey and experimental setting that individuals with higher prior uncertainty do not update
more when receiving new information, suggesting the important role of the cost channel.

3Indeed, the property of information costs is an understudied and growing area in information choice (Blankespoor
et al., 2019), as previous models have primarily focused on the relationship between uncertainty and the benefits of
acquiring information.
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model. Analyzing the future profitability of Regeneron requires deep expertise to assess the

new drugs it develops than projecting Walmart’s future revenue. Furthermore, Regeneron

has a shorter history of public data than Walmart, so overall less data is available to acquire.4

The SIC simply states that this difference in processing costs should be mainly driven by

the difference in intrinsic uncertainty and less so by temporal variation in uncertainty.

Figure 1: An Illustrative Example of the “Sticky Information Cost”

Figure 1 plots a measure of information costs of these two companies along with proxies

of the two types of uncertainty. The upper panel shows the information processing costs,

i.e. the readability of their annual reports (the Bog Index as proposed in Bonsall et al.

(2017)) over time along with the EPU, an index of aggregate economic uncertainty proposed

by XXX. The figure shows Regeneron has persistently higher information processing costs

than Warmart over the last 25 years, and their differences are not much impacted by the

variation of EPU. In contrast, as the lower panel shows, these firms’ intrinsic uncertainty —

as proxied by their 36-month moving averages of idiosyncratic volatility – follow a similar

4Regeneron went public in April 1991, while Walmart stock started trading in August 1972.
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pattern as in the upper panel, indicating strong relation. These patterns capture the essence

of the SIC hypothesis.

The third feature of the model is the presence of sell-side analysts, a large information

intermediary important to the efficiency of the market (Kothari et al., 2016). The analysts

in our model produce ex-ante biased forecasts (“EHB”) as in reality. Furthermore, investors

have free access to these forecasts, which, if not de-biased by investors, will lead to return

predictability. On the contrary, if investors fully de-bias these biases, there should be no

return predictability.

Building on these features, we derive the equilibrium predictions of our model with

respect to the relationship between information processing costs, uncertainty variation and

return predictability of EHB. Investors in our model face a trade-off when acquiring informa-

tion with their limited information processing capacity to de-bias analysts’ forecasts. Intu-

itively, facing uncertainty, investors have more incentive to acquire information, as every bit

of information is valuable (the “benefit channel”). However, acquiring the additional infor-

mation does not necessarily cost the same. With higher uncertainty, every bit of information

may be more costly (the “cost channel”). The two channels deliver the opposite relation-

ships between uncertainty and return predictability: if uncertainty arises mostly through the

benefit channel while the cost does not increase as much, higher uncertainty leads to greater

information acquisition in equilibrium and therefore less return predictability of EHB, and

vice versa.

In sum, the model yields three new implications related to information costs, informa-

tion acquisition, and uncertainty. First, there is a stronger relationship between information

costs and intrinsic uncertainty than information costs and temporal uncertainty. Second,

there is a negative relationship between information costs and information acquisition. Fi-

nally, variations in temporal uncertainty and intrinsic uncertainty should lead to contrasting

patterns information acquisition, which in turn leads to contrasting patterns in the return

predictability of EHB.

To test the first prediction, we use direct measures of information processing costs

proposed in the literature and construct ML-based earnings ex-ante analyst biases similar to

that of van Binsbergen et al. (2022). Validating the SIC, we find that the information cost

measures are persistent over time, with large autoregressive coefficients. Furthermore, they

exhibit more positive correlations with measures of intrinsic uncertainty relative to measures

of temporal uncertainty.

Second, we evaluate the relationship between information processing costs and infor-
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mation acquisition. The model predicts that as information costs increase, the amount of

information acquired by investors decreases. We use the return predictability of EHB as a

measure of information acquisition. In a situation where investors fully de-bias analysts fore-

casts, there should be no return predictability generated from the predictable component of

said forecasts. Conversely, our model predicts that for situations where the information cost

channel dominates, investors will acquire less information to de-bias the analysts forecasts,

leading to stronger return predictability of EHB. To test this, we sort firms into terciles

based on a measure of information cost. Within each tercile, we we form quintile portfolios

based on EHB. We find that firms with higher information costs generate abnormal returns

of a larger magnitude of a long-short EHB portfolio relative to firms with lower information

costs.

Using our findings above, we then can evaluate whether a contrasting relationship exists

between investors’ information acquisition and variations in intrinsic and temporal uncer-

tainty. We expect the information cost channel to play a dominant role for variations in

intrinsic uncertainty as the costs to acquire information varies across firms much more than

it does across time. As such, we expect abnormal returns to be greater firms with high

intrinsic uncertainty relative to low intrinsic uncertainty. Conversely, as information costs

are sticky across time, the information benefit channel is expected to dominate in the time-

series, leading to lower abnormal returns in periods of high temporal uncertainty relative to

low temporal uncertainty.

In the same manner as the tests for information cost and information acquisition, we first

sort our sample into terciles based on measures of temporal and intrinsic uncertainty. Within

each tercile, we we form quintile portfolios based on EHB. Our results support the model’s

predictions: the magnitude of a long-short EHB abnormal returns varies with uncertainty in

opposite ways when considering variations in intrinsic vs. temporal uncertainty, as illustrated

in Figure 2. In this figure, the left half of the panel shows that the (Fama-French Five-Factor

[FF5]) alphas of the long-short portfolios sorted on EHB are the highest in the high intrinsic

uncertainty tercile measured by firm-level idiosyncratic volatility (“IVOL”), while the right

panel shows that the alphas are the highest in the low temporal uncertainty tercile measured

by EPU.
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Figure 2: The Opposite Relationships Between Uncertainty and Return Predictability

Note: uncertainty levels are the lowest in tercile 1 (T1) and highest in tercile 3 (T3). The whiskers
indicate the 95% confidence interval around point estimates.

We show that this contrasting pattern is robust across multiple measures of intrinsic and

temporal uncertainty. These results strongly support the our model and suggest that the

information cost channel dominates for variations in intrinsic uncertainty and the information

benefit channel dominates for variations in temporal uncertainty.

We investigate a broader set of variations in anomaly return predictability are consistent

with the contrast pattern. First, we document a strong size effect in the return predictability

of EHB, which is consistent with a smaller information benefit and higher information cost

among small-cap firms. Second, we analyze two prominent earnings-related return anomalies

related to analysts’ revisions and announcement day returns. Using these two anomalies to

proxy for investors’ inefficient processing of earnings-related information, we similarly find

an overall positive relation between temporal uncertainty and information acquisition but a

negative relation between intrinsic uncertainty and information acquisition.

Finally, we explore whether alternative explanations based on information demand, be-

havioral biases, or limits of arbitrage can explain the contrasting cross-sectional versus time-

series relationships between uncertainty and the degree to which investors efficiently process

analysts’ forecasts. Using EDGAR downloads from Ryans (2017) as a proxy for information

demand, the magnitude of EHB as a proxy for behavioral biases, and the effective bid-ask

spreads as a proxy for the trading friction, we find that these alternative stories struggle to

explain our empirical findings. Thus, the relation between uncertainty and anomaly returns

offers a valuable empirical moment that helps distinguish between information choice theory

and these competing theories.
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1.1 Related Literature

Our paper contributes to the literature on the relation between uncertainty and in-

vestors’ information acquisition. A number of prior studies (e.g., Van Nieuwerburgh and

Veldkamp, 2010; Benamar et al., 2021; Dávila and Parlatore, 2023; Andrei et al., 2023) build

theoretical models that analyze the relationship between uncertainty and information ac-

quisition.5 We add to the theoretical analysis of the relationship between uncertainty and

investors’ information acquisition through two innovations. First, conventional literature

such as Kacperczyk et al. (2016) and Van Nieuwerburgh and Veldkamp (2010) usually fo-

cuses on the benefit channel of information acquisition, letting the information acquisition

cost be homogeneous across stocks. Here investors’ learning decision depends on the benefit

only. Prevailing empirical evidence generally finds a positive relation between uncertainty

and investors’ information acquisition (Loh and Stulz, 2018; Benamar et al., 2021; Andrei

et al., 2023), supporting the information benefit channel that higher uncertainty amplifies

the marginal benefit of information.

We incorporate heterogeneous learning cost in the cross-section of stocks and generate

new insights on the impact of information cost on optimal information cost and uncertainty.

Through this new channel, we find that the relation between uncertainty and information

acquisition could have opposite direction in the time-series vs. in the cross-section. Our

findings demonstrate that the costs of information acquisition also play a vital role in driving

the relationship between uncertainty and investors’ information acquisition.

While several recent studies have highlighted the role of information acquisition costs

in information acquisition (e.g., Blankespoor et al., 2019; Chen et al., 2022; Fuster et al.,

2022; Huang et al., 2022), our study is the first to propose and test the hypothesis that in-

formation cost can have distinct relationships with cross-sectional and time-series variations

in uncertainty. Our results highlight the necessity to distinguish between these two types of

variations in uncertainty to accurately model the information cost channel, which holds sig-

nificant implications for future research. Conversely, as both types of uncertainty variations

positively influence the information benefit, such a distinction may not be necessary when

modeling the information benefit channel.

5Dávila and Parlatore (2023) develop a general equilibrium model that elucidates the intricate relationship between
uncertainty and price informativeness. As defined in Dávila and Parlatore (2023) and Dávila and Parlatore (2018),
price informativeness is determined by the regression of prices on future payoffs, assessing the extent to which prices
predict future asset payoffs. This concept of price informativeness differs from our approach to measuring information
acquisition, which involves running regressions of future returns on ex-ante biases in analysts’ forecasts to determine
whether investors completely adjust for this bias.

8



Second, our model is the among first to take analyst forecast as a information interme-

diary in the investors learning process. The model explicitly derives how analyst forecast

bias is incorporated into prices and predicts returns. The model illustrates the relation be-

tween information acquisition (i.e., de-biasing) and return predictability of analyst forecast

bias documented in the literature (van Binsbergen et al., 2022). As such, our paper also

relates to the literature that aims to understand the role of analysts’ forecasts in shaping

the markets’ earnings expectations, as summarized in Kothari et al. (2016). Specifically, the

paper provides an information choice perspective to explain the long-standing puzzle of why

investors do not fully unravel analysts’ bias (Frankel and Lee, 1998; So, 2013; van Binsber-

gen et al., 2022). Furthermore, we present evidence that shows that the proposed model can

potentially explain a broader range of earnings-related return-predictability patterns.

2 An Information Choice Model with Two Types of Uncertainty

Variation

2.1 Theoretical Background: A Information Choice Model with Analyst Fore-

cast as Information Intermediary

We present our theoretical framework below. The model has three periods t = 0, 1, 2.

There are n risky assets and one riskless asset in the market. The risky assets include n− 1

stocks and one composite asset (the market portfolio). At t = 0, analysts produces forecasts

of the risky assets and a continuum of investors with a measure of one choose to allocate

their attention across different assets. Investors can allocate attention to de-bias analysts’

forecast (or, in other words, get a private signal based on the forecast). At t = 1, the investor

chooses a portfolio of assets based on their posterior. At t = 2, asset payoffs are realized.

2.1.1 Setup

Assets The model has one riskless and n risky assets. The riskless asset is normalized to

have unit return and infinity supply. Risky assets (stocks) have net positive supplies, and

random payoffs fi at t = 2 with the following factor structure:

fi = µi + βizn + zi, ∀i = 1, · · · , n− 1

fn = µn + zn
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where µi is the expected payoff of asset i, and zi ∼ N(0, σi) is an asset i-specific payoff shock

(risk factor) that are independent from each other, and σi is the variance of the shock. zn

can be interpreted as an aggregate shock to all stocks (i.e., the market factor). We denote

the covariance matrix of z as a diagonal Σ with the entry (i, i) being σi.

We argue that the firm-specific uncertainty contains two parts. One is determined by the

firm’s intrinsic uncertainty, e.g. complexity in business model. This part is sticky and varies

across firms. The other part is due to temporary fluctuations e.g. resolution of uncertainty

or changes in the aggregate information environment. As such, we propose the following

structure of the firm-specific shock variance.

σi = σF
i + σS

i , ∀i = 1, · · · , n− 1 (1)

where σS
i ≡ ϕiσ

S represents the temporal uncertainty component in σi. This is motivated by

the finding from Herskovic et al. (2016) that firms’ idiosyncratic volatility share a common

factor, i.e., CIV, even though the residuals–zi–are uncorrelated. This common factor varies

across time and firms load on it heterogeneously. The fixed loading ϕ captures firm’s riski-

ness as an exposure to the temporal volatility. In this model, we consider this parameter as

exogenous and unrelated to the information acquisition decisions. In addition to the com-

ponent driven by the temporal uncertainty, we add a further layer of intrinsic uncertainty

σF
i that is related to the underlying business of the firm. This can be represented as the

persistent cross-sectional difference of the idiosyncratic volatility after accounting for the

exposure to the CIV factor.

Following Kacperczyk et al. (2016), we focus on factors where the payoff is f̃ = Γ−1µ+z,

where Γ is a n by n matrix that maps the risk factor z to the asset mean-zero payoffs f −µ.6

The payoff of a risk factor is payoff to a portfolio of the underlying asset. The advantage

of dealing with risk factors is the analytical tractability given the independence among risk

factors.

For simplicity, we assume a fixed supply of each factor, denoted as xi. The literature

usually imposes a supply noise, which prevents the price from fully revealing the fundamental

value. In our framework, however, the aggregated private signal cannot fully reveal the

fundamental z, since all signal are based on a common analyst forecast. To better clarify our

mechanism, we neglect the supply noise. In Appendix C.2, we present a generalized version

of the model with skilled and unskilled investors and supply noise. The results are consistent

6Specifically, Γ’s diagonal element is 1 and the last column is the vector given by {βi}n−1
i=1 . All other entries are

zero.
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with the simplified model.

Preference LetW0 andWj be the initial (t = 0) and the final (t = 2) wealth for investor j.

We assume investors have mean-variance utility over final wealth. We use Ej (Vj) to denote

investor j’s expectation (variance) conditional on their information at time t = 1.

At t = 1, investors choose the holding of assets qj to maximize the expected utility

U1j = Ej [Wj]−
γ

2
Vj [Wj] (2)

subjective to the budget constraintWj = W0+q
′
j(f−p). Here γ is the risk aversion coefficient.

qj and p are n by 1 vectors of asset holdings and prices, respectively. Using p̃ = Γ−1p and

q̃j = Γ′q′j, we can write the problem to be maximizing utility by choosing the holdings of

factors with the constraint Wj = W0 + q̃′j(f̃ − p̃)

Prices In equilibrium, the price of factors and assets can be determined by the market

clearing condition: ∫
q̃ijdj = xi ∀i = 1, · · · , n (3)

The left-hand side is the aggregate demand for risk factors and the right-hand side is the

aggregate supply.

De-biasing and signal structure For each factor, analysts produces a consensus forecast

of the payoff at time t = 0. AFi = zi + Bi, where Bi ∼ N(0, σB
i ) is the bias of the forecast,

with σB
i being the bias variance.

We assume that the variance of the analyst forecast bias is proportional to the prior

variance, i.e., σB
i = ρσi. This assumption captures the intuition that analysts produce noisier

forecast in times of heightened uncertainty and for firms that are innately more uncertain,

consistent with Loh and Stulz (2018). In addition, Loh and Stulz (2018) find that investors

rely more on analyst forecasts in times with higher prior uncertainty, which implies that

analyst forecast bias precision decreases more slowly than the prior precision in bad times.

As such, we further assume ρ ≤ 1.

For simplicity, zi and Bi are assumed to be independent. Investors are aware of the

bias and must allocate attention to acquire information in order to de-bias the forecast.

Specifically at t = 0, investor j can exert effort to de-bias a fraction b ∈ [0, 1] of Bi. After

de-biasing, the investor obtains a more precise signal on the fundamental. For factor i,
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investor j’s signal is

ηij = zi + εij = zi + (1− bij)Bi

The vector of signal noise for investor j is distributed as N(0,Σηj) where Σηj is a diagonal

matrix with the ith diagonal element given by ση,ij. We denote the relative precision of the

processed signal compared to the original signal as θij, given by θij =
τηij
τBi

= 1
(1−bij)2

> 1. This

measure quantifies the extent to which signal precision improves through the de-biasing

process. In the next subsection, we discuss how to specify our information cost function

based on the improvement in the precision.

Information cost De-biasing analyst forecasts requires attention and effort, which we for-

malize through the concept of information acquisition cost. The literature has proposed vari-

ous functional forms for information costs, including entropy-based costs (Van Nieuwerburgh

and Veldkamp, 2010) and additive costs (Van Nieuwerburgh and Veldkamp, 2010; Kacper-

czyk et al., 2016). In this paper, we follow Avramov et al. (2022) and adopt a quadratic

information cost function. This specification ensures the existence of a well-defined, inte-

rior solution for optimal information acquisition while also capturing the intuitive economic

principle that the marginal cost of improving forecast precision increases as information ac-

quisition intensifies. Specifically, for an investor j to de-bias the analyst forecasts for factor

i, the cost is a quadratic function on the de-biasing effort,

cij(θij) =
κi
2
(θij − 1)2 =

κi
2

(
τ ηij
τBi

− 1

)2

(4)

where κi determines the marginal cost of increasing signal precision. This cost function

satisfies several properties: it is non-negative, increasing, and convex in de-biasing level. In

addition, the cost is zero when there is no information acquisition and goes to infinity when

b → 1, which indicates that investor can never fully de-bias the analyst forecast to obtain

the exact value of the fundamental.

Assumption 1 (Sticky Information Cost). A firm’ information cost is proportional to

the its intrinsic uncertainty, κi = ψσF
i .

This is the key assumption and main innovation in our model. It claims that investors’

marginal costs to process information are slow moving and vary with the firm’s fundamental

characteristics, such as technology and business models. This is motivated by the intuition

that the information processing costs are persistent, as shown in Figure 1.
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Sticky Information Cost (SIC) implies a distinctive relationships between investors’

information processing costs based variations in temporal and intrinsic uncertainty. Across

firms, those with more advanced technology and more complicated business models require

investors to incur higher marginal costs to de-bias analysts forecasts. Anecdotally, research

analysts working for buy-side firms specializing in biotech companies typically have high

entry costs such as requiring experience in R&D or holding advanced medical degrees while

the entry requirement for analysts in retail sectors is relatively lower. At the same time, these

more complicated firms are also those with higher ex-ante intrinsic volatility; for example,

Regeneron vs. Walmart, as shown in Figure 1. As a result, SIC implies a positive relationship

between information processing costs and intrinsic uncertainty.

At the same time, SIC assumes that the processing costs do not correlate as strongly

with temporary variations in uncertainty over time. Intuitively, if a young technology firm’s

volatility spikes due to macroeconomic conditions or earnings, the SIC assumption posits that

the costs for analyzing this firm should not significantly increase as the firms’ fundamental

characteristics have not noticeably changed.

In section 4, our empirical evidence shows that it is indeed the case: a measure of infor-

mation cost is positively correlated with measures of intrinsic uncertainty while uncorrelated

with measures of temporal uncertainty (see Figure 5).

Posteriors Based on the private signal, an investor updates her beliefs about the factors

by forming a Bayesian posterior with mean and variance.7

µ̂j ≡ Ej [z|ηj] = Σ̂jΣ
−1
ηj ηj, Σ̂−1

j = Σ−1 + Σ−1
ηj

where Σ̂j is investor j’s posterior variance on the factors z. From a time t = 0 perspective,

µ̂ is normally distributed with zero mean and variance-covariance matrix V0 [µ̂j] = Σ − Σ̂j

according to the law of total variance.

Given the homogeneity of skilled investors, we study a symmetric equilibrium where

every investor will choose the same level of de-biasing for a given factor and obtain the same

posterior precision Σ−1
η . In the symmetric equilibrium, the aggregate posterior precision is

Σ̄−1 =
∫
Σ̂−1

j dj = Σ−1 + Σ−1
η ,

7For simplicity, we do not include noisy traders and uninformed investors in our benchmark model. As shown
in Lemma 1, the price fully reveals the private signal. Therefore, price signal is not used in investors’ information
updating. In Appendix C.2 we present the fully-specified model with heterogeneous investors and supply noise
following the standard literature. The results hold consistently.
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Equilibrium The equilibrium of the model is determined by the following optimization

problem. An investor maximizes time t = 0 expected utility by choosing the signal precision

(or de-biasing)

U0j ≡ E0

(
Ej [Wj]−

γ

2
Vj [Wj]

)
−

n∑
i=1

cij (5)

2.1.2 Solutions

We solve the model backward. First, we solve the portfolio optimization problem at

t = 1, taking the information acquisition and posterior beliefs as given. In this step, we

can also derive the equilibrium price. Second, we derive the optimal information acquisition

problem and produce propositions about the relation between uncertainty and information

acquisition.

Portfolio allocation The optimization problem is given by

max
q̃j

U1j = Ej [Wj]− γ
2
Vj [Wj]

s.t. Wj = W0 + q̃j
′(f̃ − p̃)

which gives the solution

q̃j =
1

γ
Σ̂−1

j

[
Ej(f̃)− p̃

]
(6)

Then we plugin this demand function to the market clear condition,
∫
q̃jdj = x + x, and

obtain the following Lemma.

Lemma 1. The equilibrium price of the factors is

p̃ = A0 + Azz + ABB

where
A0 = Γ−1µ− γΣ̄x

Az = Σ̄Σ−1
η

AB = Σ̄Σ−1
η (I− b)

Σ̄ and Ση are given below in the proof.

Proof. See Appendix C
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Lemma 1 shows that the equilibrium price is a linear function on the fundamental shocks

z and analysts’ bias B. The price loading on analysts’ bias is proportional to that on the

fundamental shock, with the proportion being 1 − bi, i.e., the investors’ de-biasing level of

factor i in equilibrium. When investors fully de-bias Bi (bi = 1), the price is not related to

the bias. In contrast, if investors do not de-bias Bi at all (bi = 0), the price respond to the

bias as much as it would to the fundamental shock.

Lemma 1 also tells us the excess returns of each stock, defined by re = f − Γp̃. Specifi-

cally, we derive the following corollary.

Corollary 1. The excess return of stock i is

rei = γσ̄ixi + βir
e
n + ζzi zi − ζBi Bi, ∀i = 1, · · · , n− 1

ren = γσ̄nxn + ζznzn − ζBn Bn

where

ζzi = σ̄i

σi

ζBi = σ̄i

σηi
(1− bi)

Proof. See Appendix C

Per Corollary 1, the excess return of a stock depends on four parts: (i) a constant

determined by its idiosyncratic volatility and supply; (ii) a part that depends on the market

excess return and its exposure (CAPM); and (iii) fundamental shocks zi, and (iv) analyst

forecast bias Bi with stock-specific loadings.

Corollary 2. The analysts’ bias Bi negatively predict stock excess return. In addition, the

predictability is weaker when the de-biasing activity bi is stronger.

Proof. See Appendix C

Corollary 2 shows that analysts’ bias predicts returns negatively (ζBi < 0), consistent

with the empirical findings. In addition, de-biasing affects return predictability of analyst

forecast bias in two ways: first, more de-biasing leads to higher signal precision relative

to the prior precision, and thus returns depends more on signals, as reflected in the term
σ̄i

σηi
=

τηi
τ̄i
. In this case, the bias contained in the signal predicts return stronger. Second,

more de-biasing decrease the fraction of bias that is incorporated into the return, lowering
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the return predictability, which is captured by the term 1− bi.
8 Corollary 2 says that under

our model assumption, the impact of de-biasing always dominates. This is because that

the analysts’ forecast is already sufficiently precise, given that σB
i < σi. Consequently, the

marginal effect of increasing precision through de-biasing is outweighed by the marginal effect

of the de-biasing process itself, as demonstrated in the proof. The impact of de-biasing on

return predictability is the main mechanism in our model.

Information decision At t = 0, investors choose posterior precision of the the de-biased

through information acquisition to maximize time t = 0 expected utility U0j.

The proof of Lemma 2 shows that the time t = 0 utility can be written as the following

form

U0j = constant+
n∑

i=1

(
λi
τ ηij
τBi

− κi
2

(
τ ηij
τBi

− 1

)2
)

(7)

where λi is the marginal benefit of increasing the relative signal precision (de-biasing), which

depends on the aggregate posterior variances and the common de-biasing activities. Impor-

tantly, λi does not depend on investor j’s decision, since any investor is atomic and cannot

affect the aggregate posterior variances. Then the optimization problem is quite straight-

forward: each skilled investor chooses an optimal level of de-biasing bij, or equivalently, the

relative signal precision θij ≡
τηij
τBi

, for each stock to maximize her utility in Equation 7. We

reach the following lemma on optimal information acquisition.

Lemma 2. In the equilibrium, each investor j chooses the same optimal signal precision for

a factor i as follows

τ ηij = τBi

(
1 +

λi
κi

)
(8)

Equivalently, the optimal de-biasing level is given by

bij = 1−
√

κi
λi + κi

(9)

where

λi =
1

2γσB
i

(
σ̄i + γ2σ̄2

i x
2
i

)
(10)

Proof. See Appendix C

8We denote the first as as the precision channel and the second as the de-biasing channel. Our analysis focuses
specifically on the de-biasing channel.
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The optimal level of signal precision features two channels: the benefit channel λi and

the cost channel κi. A higher λi (κi) leads to higher (lower) de-biasing of stock i.

Corollary 3. The marginal benefit of increasing relative signal precision, λi, is decreasing

in the de-biasing level, bi.

Proof. See Appendix C

Greater levels of de-biasing reduces the posterior variance, which is positively related to

the benefit of de-biasing. Intuitively, once a signal has been sufficiently de-biased, additional

de-biasing yields little benefits. Theoretically, this ensures the existence of an interior optimal

level of de-biasing, as the marginal cost of de-biasing increases with the de-biasing level.

The equilibrium is such that all investors choose the same de-baised signal precision τ ηij
following Equation 8. In addition, λi is determined by investors’ aggregated signal precision.

In the symmetric equilibrium, the relative signal precision θ∗i for factor i is characterized by

the fixed-point problem below

f(θi) ≡ κi (θi − 1)− λi = 0 (11)

2.1.3 Implications

Uncertainty and Return Predictability In this subsection, we derive formal propositions

that present the two channels (the cost channel and the benefit channel) through which

prior uncertainty affect information acquisition (captured by return predictability of ana-

lysts’ bias). Intrinsic uncertainty, which manifest in the cross-section of firms, and temporal

uncertainty, which varies across time, impact information acquisition in opposite ways. The

cost channel is driven by intrinsic uncertainty, and the benefit is driven by temporal uncer-

tainty.

Proposition 1 (Intrinsic uncertainty and return predictability). In the equilibrium,

a higher intrinsic uncertainty σF
i lowers de-biasing activity (less information acquisition)

and increases return predictability of analysts’ forecast biases

Proof. See Appendix C

First, Proposition 1 shows a negative relation between intrinsic uncertainty and de-

baising activity. This is due to the fact that higher intrinsic uncertainty leads to higher

information costs, which suppresses de-biasing and information acquisition.
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In our model, intrinsic uncertainty affects de-biasing through both the cost and benefit

channels: First, higher intrinsic uncertainty increases the marginal benefit of acquiring in-

formation, as shown in the proof, dλi

dσF
i
> 0. This encourages investors to de-bias more and

obtain a more precise signal. Second, a higher intrinsic uncertainty increases the marginal

cost of acquiring information, leading to lower de-biasing. In our model, the cost channel al-

ways dominate the benefit channel. This is because an increase in σF
i leads to a proportional

increase in the marginal cost of information acquisition, whereas its effect on the marginal

benefit operates through the prior uncertainty, which σF
i only partially influences. In other

words, the impact of an additional unit increase in σF
i on marginal cost is greater than its

effect on marginal benefit, leading to the dominance of the cost channel.

Second, Proposition 1 presents a positive relation between intrinsic uncertainty and

return predictability. The reason is that a higher intrinsic uncertainty discourages de-biasing

and information acquisition, thus price and return are more sensitive to the analyst forecast

biases.

Proposition 2 (Temporal uncertainty and return predictability). In the equilibrium,

a higher temporal uncertainty σS increases de-biasing activity (more information acquisition)

and decreases return predictability of analysts’ forecast biases

Proof. See Appendix C

Proposition 2 shows that information acquisition increases with temporal uncertainty.

When temporal uncertainty increases (e.g., due to heightened macroeconomic uncertainty)

and the that intrinsic uncertainty/information cost are sticky, the marginal benefit of de-

biasing increases, thus investors de-bias more and return predictability of bias becomes

weaker.

Overall, Proposition 2 presents a negative correlation between the temporal uncertainty

and information acquisition/bias return predictability. We summarize this channel as the

benefit channel.

We then reach a contrasting relation between posterior volatility and return predictabil-

ity in the cross-section versus in the time-series. Figure 3 shows an numerical example of

the de-biasing level and return predictability as a function of the two types of uncertainty

in the equilibrium. The figure shows the contrasting influence of the temporal uncertainty

and intrinsic uncertainty, consistent with Propositions 1 and 2.
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Figure 3: Return predictability and de-biasing vs. intrinsic and temporal uncertainty.
The numerical exercise is implemented by setting σF = 0.05 in the right panel, σS = 0.05 in the
left panel, and x = 1, γ = 2, ψ = 1, and k = 1 in both panels.

Fundamental Anomalies and Price Efficiency In addition to the implications regarding

the return predictability of analyst forecast bias. Our model can also shed light on the

effects of intrinsic and temporal risk on the price efficiency and fundamental/accounting-

based anomalies.

Specifically, We define the price efficiency as the price sensitivity to the fundamental

shock Az, and the fundamental-based return anomaly as the return sensitivity to the funda-

mental shock ζzi . Then we generate the following propositions.

Proposition 3. In equilibrium, a higher intrinsic (temporal) uncertainty decreases (in-

creases) the extent to which the price reflects the fundamental shock, Az,i, and thus increases

(decreases) the fundamental-based return anomaly, as measured by the return predictability

of the fundamental shock, ζzi .

Proof. See Appendix C

Proposition 3 shows that when intrinsic uncertainty increases, investors have less incen-

tive to process analysts’ forecasts and correct biases due to the higher cost of information.

As a result, investors receive a less precise signal, and the equilibrium price reflects less of
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the innovations in fundamental information. Since future returns are determined by the

difference between the fundamental and the price, alternative proxies for innovations in fun-

damentals—such as accounting variables—predict returns. Supporting this interpretation of

return predictability by proxies for fundamentals, Hirshleifer and Ma (2024) find that the

introduction of new technologies that reduce information-processing costs leads to a decrease

in mispricing related to accounting-based anomalies.

Conversely, when temporal uncertainty increases, the marginal benefit of processing

information rises. As the cost of information remains sticky, investors are more inclined to

debias, and the relative precision of the signal improves. As a result, prices become more

reflective of fundamental shocks, and return predictability by fundamental variables weakens.

2.2 Testable Predictions

Our model leads to testable predictions concerning the cross-sectional and time-series

relationships between information processing costs, uncertainty, and investors’ information

acquisition. First, SIC implies there is a stronger correlation between measures of information

costs and uncertainty across firms rather than over time. We test the predictions using direct

measures of information processing costs proposed in the literature.

Second, the model implies a negative cross-sectional relationship between information

processing costs and information acquisition. We test this prediction using using the return

predictability of analysts’ ex-ante biases and our measure of information costs.

Third, the model predicts contrasting relationships between investors’ information ac-

quisition and uncertainty as it relates to temporal uncertainty (variations in uncertainty

across time) and intrinsic uncertainty (variations in uncertainty across firms). Specifically,

SIC implies that the information cost channel plays a more dominant role in shaping the

relationship for intrinsic uncertainty than in shaping the relationship for temporal uncer-

tainty. In the case that the effect of the information cost channel is large enough, we could

observe an opposite relationship between information acquisition and variations in tempo-

ral uncertainty relative to intrinsic uncertainty. We test these predictions using the return

predictability of analysts’ ex-ante biases and multiple measures of uncertainty.

To better illustrate this implication, Figure 4 shows the contrasting relation between

posterior volatility and information acquisition. Both are driven by exogenous prior uncer-

tainty. However, while posterior uncertainty is always increasing with the two types of prior

uncertainty, information acquisition is affected by the two types of uncertainty with opposite

directions.
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Figure 4: The contrasting relationship between return volatility and return predictabil-
ity.

Finally, the model provides a new perspective on the variations in return anomalies. It

predicts that the return predictability of ex-ante biases is weaker among large-cap stocks

for which information costs are lower. It also predicts that return anomalies related to

investors’ inefficient processing of earnings-related information would also exhibit opposite

relationships between temporal and intrinsic uncertainty.

3 Data and Measurement

Our sample consists of U.S. common stocks that are covered in the intersection of CRSP,

Compustat, and I/B/E/S. We exclude micro-cap stocks, defined as stocks with a market

capitalization below the NYSE 20th percentile, and low-price stocks, defined as stocks with

a price below $5.

3.1 ML-based Earnings Forecasts

We construct the statistically optimal earnings forecasts, following the recommended

machine learning (ML) specification in Campbell et al. (2023).9 Similar to van Binsbergen

et al. (2022), we compute the ex-ante measure of the conditional biases in analysts’ forecasts

9Campbell et al. (2023) provides a detailed review of the machine learning earnings-forecasting literature. The
recommended machine learning specification is similar to those used in van Binsbergen et al. (2022); de Silva and
Thesmar (2022).
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as the difference between analysts’ forecasts and the ML forecasts, which we refer to as

ex-ante human bias (EHB). Our EHB measure is the weighted average of one-year-ahead

and two-year-ahead EHBs such that the weighted distance from the current month to the

fiscal period end is a constant 12 months.10 Appendix A provides a detailed description of

the construction of EHB. We use the return predictability of EHB to quantify the extent

to which investors unravel the predictable errors in analysts’ forecasts, as discussed in the

introduction.

Our ML earnings forecasts begin in June 1990 as the forecasts require sufficient data

in the training sample. As a result, our final sample period is from June 1990 through

December 2019. We provide detailed variable definitions in Table 1.

3.2 Measures of Information Costs

We follow the prior literature in finance and accounting (e.g., Begenau et al., 2018;

Blankespoor et al., 2020) to construct direct measures of information cost. The literature

indicates that information complexity and scarcity are two significant factors influencing

information cost. Intuitively, firms with more complex disclosures and less readily available

information necessitate higher information processing costs to de-bias analysts’ forecasts.

To measure information complexity, we use the Bog index and the log net file size of

10-Ks, following the methodologies of Bonsall et al. (2017); Loughran and Mcdonald (2014,

2016).11 The Bog index captures the plain English attributes of 10-K statements, focusing

primarily on the writing clarity in firms’ disclosures. In contrast, the log net file size provides

a simple and effective gauge of the overall complexity of the firm. As Loughran and Mcdonald

(2016) argue, the readability of 10-Ks and the business complexity are ultimately intertwined,

so we employ both measures jointly to capture information complexity.

To measure firm-level differences in information scarcity, we use firm age, which is the

number of months since the first trading day for each firm. The idea is that as a firm ages,

more information becomes available for investors to analyze its fundamentals. As an example

of firms’ fundamental information, IBM (which had its IPO well before EDGAR came into

10For example, if in month t, the firm is 6 months from the one-year-ahead fiscal period end and therefore 18 months
from the two-year-ahead fiscal period end, our composite EHB measure would weight each individual EHB by 0.5.
Additionally, we require the FY2 forecast to be non-missing. Our results are robust to alternative specifications of
the composite EHB such as the average across the one-quarter-, one-year-, and two-year-ahead EHB measures.

11Bonsall et al. (2017); Loughran and Mcdonald (2014, 2016) show that the Bog index and the net file size are
superior measures for capturing information complexity than the Fog index. We download these measures directly
from their respective websites.
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existence) had 105 10-K and 10-Q filings from the beginning of EDGAR through the end of

2020, whereas Tesla, which filed its IPO in 2010, had only 42 up to that date.

We recognize that each of the three measures may contain measurement errors. To

address this concern, we construct an information-cost index (IC index) that integrates the

three measures. Specifically, at the end of June of each year, we first orthogonalize the cross-

sectional normalized rank of each measure (Bog index, log net file size, and firm age) against

the cross-sectional normalized rank of Size (Market Capitalization) to control for the impact

of firm size. We then average the residuals of these regressions to create the information-cost

index. This measure is applied from June of year t to May of t+ 1.

These information cost measures exhibit high persistence over time and large cross-

sectional variations across firms. First, we regress the measures on their one-year lagged

values. The regression coefficients are 0.88 for firm age, 0.92 for the Bog index, and 0.65

for net file size, which correspond to a half-life of 5.42, 8.31, and 1.61 respectively.12 These

results are consistent with the notion that firm-level information processing costs evolve

slowly over time.

3.3 Uncertainty

3.3.1 Temporal Uncertainty

We select three measure for temporal uncertainty. First, we use the Economic Policy

Uncertainty (EPU) measure provided by Baker et al. (2016).13 As a second measure, we use

the common idiosyncratic volatility (CIV) factor proposed in Herskovic et al. (2016).14 These

are both backward-looking aggregate uncertainty measures. Finally, we use the forward-

looking macroeconomic uncertainty (MU) provided by Jurado et al. (2015) and Ludvigson

et al. (2021). We prefer MU to the VIX index as the forward-looking aggregate uncertainty

measure because VIX is also affected by risk premia. The use of both forward-looking

measures of uncertainty help to validate that our results are not driven by realized measures

of uncertainty.

12We conduct this analysis annually as the Bog index and Net File Size are updated annually with the 10-K and
Firm Age is slow moving. These results are shown in Table A3 of Appendix B.

13According to Baker et al. (2016), EPU “capture(s) uncertainty about who will make economic policy decisions,
what economic policy actions will be undertaken and when, and the economic effects of policy actions (or inaction).”

14For our analysis, we de-mean CIV across our sample period.
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3.3.2 Intrinsic Uncertainty

We consider three measures of intrinsic uncertainty. First, we consider idiosyncratic

volatility (IVOL). Secondly, we use a measure derived from regressing, by firm, IVOL on

CIV over a 36 month rolling window and obtaining the constant. We denote this as IVOL

Orthogonal. This allows us to capture the remaining/firm specific IVOL after removing the

common idiosyncratic volatility factor. Finally we also use option implied volatility (OIV).

This allows us to evaluate our results using a backward-looking, or realized, measure as well

as a forward-looking measure of uncertainty. As an alternative measure of IVOL Orth. and

CIV, we also we also dissect firm-level IVOL into two distinct components: a persistent

component that captures cross-firm differences in intrinsic uncertainty and a time-series

variation component that captures temporal fluctuations in uncertainty. Empirically, we

use a firm’s rolling average of IVOL over the past 36-months, (“IVOLMA36”) to proxy for

the former and the ratio between the current value of IVOL and the persistent component

(“Abnormal IVOL”) to proxy for the latter.

4 Empirical Results

4.1 Information Processing Costs and Uncertainty

Based on measures of information scarcity and complexity described above, we being

by examining the first of the testable predictions generated by the model that suggests

that a stronger correlation between information processing costs and intrinsic uncertainty

rather than temporal uncertainty. We examine these relations between information costs

and uncertainty using two tests.

In our first test, we regress one measure of intrinsic uncertainty (IVOL) on our measures

of information costs, controlling for firm size as well as firm or time fixed effects. Regres-

sions with the time fixed effects capture the cross-sectional relation between uncertainty and

information costs whereas those with firm fixed effects capture the time-series correlations

between uncertainty and information costs. As Table 2 shows, the coefficient estimates as-

sociated with the cross-firm relation (Columns 2, 4, 6) are consistently higher than those

with the time-series relation (Columns 1, 3, 5).15 Furthermore, the statistical significance

is consistently stronger for the cross-sectional relation (with time fixed effects) than for the

time-series relation.
15We show that these results are robust by using Option Implied Volatility (OIV) in Appendix Table A4
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In our second test, we evaluate the correlation between the information cost measures

and our measures of temporal and intrinsic uncertainty, as shown in Figure 5. Our model

suggests that the the correlation between the information measures and the persistent com-

ponent should be more positive than the correlation with the temporal component. As Figure

5 shows, the IC Index, along with its constituent measures, all show a positive correlation

with our various intrinsic uncertainty measures: IVOL, IVOLMA36, IVOL Orthogonal, and

OIV. Conversely, the temporal uncertainty measures–Abnormal IVOL, CIV, EPU, and MU–

all have a slightly negative correlation with the information cost measures. These results

further confirm SIC.16

In summary, our results in this subsection support the prediction of Assumption 1 of

the model that information costs are more strongly correlated with persistent differences in

intrinsic uncertainty than with differences in temporal uncertainty.

4.2 Information Processing Costs and Investors’ Information Acquisition

Our model predicts an unambiguously negative relationship between information costs

and investors’ information acquisition: as information costs increase, investors acquire less

information, thus de-biasing analysts forecasts less. Therefore, we should observe the return

predictability of EHB (the negative of the information acquisition) to be stronger among

firms with higher information costs.

To test the relationship, we first sort stocks into terciles according to the IC Index, and

within each IC Index tercile, we further sort stocks into quintiles based on EHB. Table 3

shows the Fama-French Five-Factor (FF5) alphas of these 15 portfolios. In alignment with

models’s prediction, these results show that the return predictability of EHB increases with

information costs, as measured by the IC Index. Specifically, for firms with the highest

information costs (IC Index T3), the long-short portfolio based on EHB (EHB Q1-Q5)

generates a monthly abnormal return of 1.054% (t-stat = 3.23). This monthly abnormal

return declines to 0.752% (t-stat = 2.34) for IC Index T2 and finally to 0.226% (t-stat = 0.78)

for IC Index T1 .

These results confirm our model’s prediction of a negative relationship between infor-

mation cost and information acquisition. Firms with greater information costs produce

16Table A1 in Appendix B shows that these results are robust to using option implied volatility measures compa-
rable to CIV, IVOL Orth., denoted COIV and OIV Orth., respectively, as well as Abnormal IVOL and IVOLMA36.
Additionally, as IVOL Orth. and IVOLMA36 and Abnormal IVOL capture a similar decomposition of IVOL as IVOL
Orth. and CIV, for the remainder of the results, only IVOL Orth. and CIV will be presented in the main tables.
IVOLMA36 and Abnormal IVOL will appear in robustness tables in Appendix B.
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abnormal returns that are significantly larger than firms with lower information costs.

4.3 Investors’ Information Acquisition and Uncertainty

Proposition 1 suggests that the in situations where the impact of the information cost

channel is smaller (i.e. over variations in temporal uncertainty), investors will increase their

information acquisition when uncertainty is high. In contrast, Proposition 1 suggests when

the impact of information cost channel is larger (i.e. over variations in intrinsic uncertainty),

investors will reduce their information acquisition when uncertainty is high.

As investors increase (reduce) their information acquisition, they debias analyst forecasts

more (less), which would lead to smaller (larger) abnormal returns. As such, we evaluate

the patterns in abnormal returns as uncertainty varies.

4.3.1 Temporal Uncertainty

We first consider the three measures of temporal uncertainty. As we expect the infor-

mation benefit channel to dominate when temporal uncertainty is high, we predict abnormal

returns to be the lowest during high uncertainty periods. We follow a similar sorting method

in Table 3. Table 4 shows how the return predictability of EHB varies across variations

in temporal uncertainty using EPU, CIV, and MU. All three panels show a consistent pat-

tern where the return predictability of EHB is weakest during high-uncertainty periods even

though MU captures forward-looking uncertainty while EPU and CIV capture different mea-

sures of prevailing uncertainty.

Panel A of Table 4 shows that the EHB Q1-Q5 portfolio generates average abnormal

returns of 1.261% per month (t-stat = 3.68) when temporal uncertainty using EPU is lowest

(“EPU T1” ), 0.803% per month (t-stat = 2.52) when EPU is the second lowest (“EPU

T2” ), and only 0.294% per month (t-stat = 0.97) when EPU is the highest. Moreover, the

difference between the two long-short portfolio returns in EPU T1 and T3 is statistically

significant and positive, amounting to 0.967 percentage points per month.

Consistent with Panel A, Panel B reveals weaker return predictability during periods of

higher CIV. Specifically, EHB Q1-Q5 generates abnormal returns of 0.732% in the bottom

tercile of CIV, which is statistically significant. In contrast, during periods when CIV is in the

top tercile, return predictability decreases to 0.152% and becomes statistically insignificant.

The spread between these two levels is 0.627%.

Finally, Panel C shows that, for MU T1 and T2, the long-short portfolio based on EHB
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(“EHB Q1-Q5”) generates an average abnormal return of 0.692% and 0.377% per month,

both statistically significant. In contrast, the long-short portfolio abnormal returns for MU

T3 (i.e., periods when MU is highest) are only 0.018% and statistically insignificant. These

findings show that our results are not driven by using forward or backward measures of

uncertainty.17

Overall, this table supports the benefit channel outlined in the model, consistent with

the prediction that higher temporal uncertainty enhances the benefit of de-biasing, which

leads to lower return predictability.

To the best of our knowledge, we are the first to document systematic variations in

EHB return predictability relative to temporal uncertainty. These results indicate that

investors acquire more information to de-bias analysts’ forecasts during periods of higher

uncertainty, which is consistent with the information benefit channel being the dominant

force of investors’ information choice when time-series uncertainty is high. Our results thus

corroborate prior findings in Bonsall et al. (2020); Benamar et al. (2021); Hirshleifer and

Sheng (2022), supporting the important role of the information benefit channel in explaining

the relation between uncertainty and information acquisition.

4.3.2 Intrinsic Uncertainty

Proposition 1 of the model predicts that for firms with high intrinsic uncertainty, the

information cost channel dominates, suggesting that abnormal returns will be greatest for

firms with high intrinsic uncertainty. Table 5 shows the variations in return predictability

across our measures of intrinsic uncertainty: IVOL, IVOL Orth., and OIV. Consistent with

our predictions, each measure of intrinsic uncertainty display a consistent pattern where the

return predictability of EHB is strongest for high-uncertainty firms.

Panel A of Table 5 shows that the when using IVOL as the measure of intrinsic uncer-

tainty, the EHB Q1-Q5 portfolio generates average insignificant abnormal returns of 0.254%

per month when for firms with the lowest uncertainty and increases to 1.551% per month

(t-stat = 3.85) when IVOL is the largest. This generates a difference in the two long-short

portfolio abnormal returns of -1.297% (t-stat = -3.84) that is statistically significant.

Panels B and C of Table 5 generate similar results with the EHB Q1-Q5 for firms in the

lowest uncertainty tercile generating insignificant abnormal returns of 0.102% and 0.233% for

IVOL Orth. and OIV, respectively. For firms with the highest uncertainty, these abnormal

17Table A5 in the Appendix B shows consistent results using Abnormal IVOL and COIV.
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returns grow to significant values of 1.035% and 1.456% using IVOL Orth. and OIV.18

Overall, Table 5 provides evidence of the model’s prediction related to the information

cost channel. For firms with high intrinsic uncertainty, it is more costly to acquire information

needed to de-bias the analysts’ forecasts relative to firms with low intrinsic uncertainty. This

leads to greater return predictability for firms with high intrinsic uncertainty.

4.3.3 Contrasting Patterns

We tie our analysis together using Figure 6. The figure provides graphical evidence of the

EHB Q1-Q5 abnormal returns across the terciles for the temporal and intrinsic uncertainty

measures from Tables 4 and 5. This figure provides visual evidence that there is a distinctive

and contrasting pattern in the return predictability across variations in temporal and intrinsic

uncertainty. As suggested by our model, when intrinsic uncertainty, as proxied by IVOL,

IVOL Orth, and OIV, is high, the information cost channel should dominate. We show

that the abnormal returns are greatest for firms with the largest values of each uncertainty

measure. Conversely, when temporal uncertainty is high, the information benefit channel is

expected to dominate. In periods of the highest uncertainty across our sample, as proxied

by EPU, CIV, and MU, we show that abnormal returns are the smallest.19

4.3.4 A Broader Set of Anomalies

Embedding the predictions of the model into information choice theories also provides

a new perspective on a broader set of variations in return predictability.

4.3.5 Variation of Return Predictability of EHB across Firm Size

Information choice theory provides a new perspective regarding why the return pre-

dictability of EHB should be weaker among larger firms. From the information benefit

channel, de-biasing analysts’ forecasts provides more benefit to investors as larger firms ac-

count for a larger share of investors’ total wealth; from the information cost channel, big

firms produce more data and therefore have reduced information processing costs of investors

relative to those of smaller firms (Begenau et al., 2018). Therefore, the information benefit

18Table A5 in the Appendix B shows consistent results using IVOLMA36 and and OIV Orth.
19Table A2 in Appendix B show that the contrasting patterns also hold when using IVOLMA36 and Abnormal IVOL

as well as OIV Orth. and COIV.
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and cost channels both predict that the return predictability of EHB should decrease with

firm sizes.

Table 6 presents evidence supporting this prediction. We examine the return predictabil-

ity of EHB among different size segments based on NYSE breakpoints. Consistent with the

hypothesis that firm size correlates with investors’ information processing costs, EHB return

predictability decreases monotonically in Size. The long-short EHB portfolio (EHB Q1-Q5)

has the highest abnormal return among small-cap stocks, yielding 0.968% per month (t-stat

= 4.16). The abnormal return declines to 0.700% per month (t-stat = 2.85) for large caps

and 0.308% per month (t-stat = 1.55) for the mega-caps. The difference in abnormal returns

between small- and mega-cap stocks is 0.660 percentage points per month (t-stat= 3.94),

which is economically significant. Therefore, our results indicate that information choice

theory not only explains the long-standing puzzle of why investors do not fully unravel ana-

lysts’ bias but can also explain our novel finding that this return predictability concentrates

among non-mega-cap stocks.20

4.3.6 The Relation Between Uncertainty and Earnings Related Anomalies

Besides the size effect, we show that the predictions of the model holds for announcement-

day returns (Bernard and Thomas, 1990) and analysts’ forecast revisions (Givoly and Lakon-

ishok, 1980).

We adopt the same portfolio sorting methodology as in Tables 4 and 5 and show the

results for the announcement-day returns and analysts’ forecast revisions in Tables 7 and

8, respectively. Notice that we divide the results here separate analyses for mega- and

non-mega-cap stocks driven by our discussion in the previous subsection. Consistent with

the pattern we find based on EHB, the return predictability associated with both variables

is, on average, positively related with the persistent, variations in intrinsic uncertainty as

measured by IVOL, IVOL Orth., or OIV, while being simultaneously negatively related

with the variations in temporal uncertainty as measured by EPU, CIV, and MU.21 These

results are consistent with our hypothesis that the information cost (benefit) channel is the

dominant driver of the relation between the extent to which investors obtain and process

information for variations in intrinsic (temporal) uncertainty. We note stronger results for

20We present our results from Figure 6 for the mega-cap and non-mega cap-firms in Table A6 in Appendix B and
show that while our results are generally consistent in both subsets. The results are stronger in the non-mega-cap
firms.

21Tables A7 and A8 show similar results using IVOLMA36, Abnormal IVOL, OIV Orth., and COIV.
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variations in intrinsic uncertainty relative to temporal uncertainty. Given that these two

variables have been shown to be persistent and robust predictors for future returns and are

able to price a broad set of asset returns (Daniel et al., 2020; Kothari et al., 2016), our

novel results regarding their distinct variations with variations in temporal and intrinsic

uncertainty provide another piece of evidence supporting the information choice perspective

of return predictability. Next, we evaluate alternative theories proposed in the literature for

explaining our empirical findings.

4.3.7 Alternative Explanations

Existing theories of return predictability emphasize the role of risk exposures, behavioral

biases, and limits of arbitrage. In this section, we explore whether these theories explain

our key empirical finding–the contrasting relationship between uncertainty and the degree to

which investors efficiently process analysts’ forecasts in the cross section versus in the time

series.

First, risk-based theories might account for the contrasting cross-sectional and time-

series correlations between uncertainty and EHB return predictability if the risk exposures

of the EHB Q1-Q5 long-short portfolio relate oppositely to uncertainty across these two

dimensions. However, no theoretical model to date has posited such a mechanism. Empiri-

cally, if the FF5 model accurately reflects appropriate risk exposures, our results, which are

based on the FF5 alphas, imply that risk-based theories fall short of explaining our empirical

finding.

Second, one explanation grounded in behavioral biases is that analysts’ biases might

correlate positively with cross-sectional fluctuations in uncertainty, yet negatively with time-

series fluctuations. However, most behavioral theories (e.g., Hirshleifer, 2001) propose an

unambiguously positive link between uncertainty and human biases. Empirically, we can

test this explanation by regressing the magnitude of our measure of analysts’ bias (i.e., EHB)

on uncertainty measures. The first two columns of Table 9 show the results. We observe a

positive correlation between analysts’ bias and both cross-sectional and time-series variations

in uncertainty—consistent with behavioral theories but not supporting this explanation.

Third, perhaps investors’ attention correlates negatively with cross-sectional variations

but positively with time-series variations in uncertainty. In information choice theories, in-

vestors’ attention typically has a constant marginal cost, thus its variations are completely

driven by information benefits. In behavioral theories, the relationship between uncertainty

and attention is complex and depends on whether uncertainty either diverts or draws at-
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tention. Empirically, we directly test this possibility by regressing a measure of attention

(human downloads from EDGAR from Ryans (2017)) on uncertainty measures. Contrary to

the explanation based on attention, we find that EDGAR downloads are positively rather

than negatively related to cross-sectional variations in uncertainty.22

Finally, theories based on limits of arbitrage could rationalize the contrasting relation-

ship if trading costs are positively associated with cross-sectional variations but negatively

with time-series variations in uncertainty. Contrary to this explanation, micro-structure

theories predict an unambiguous positive relation between uncertainty and trading costs as

higher uncertainty leads to increased information asymmetry and thus higher trading costs.

Empirically, we directly test this explanation by regressing a trading cost measure (i.e., the

effective spread) on uncertainty measures. In columns 5 and 6 of Table 9, we find that

trading cost is either positively or insignificantly correlated with both time-series and cross-

sectional variations in uncertainty, which aligns with micro-structure theories but contradicts

this hypothesis.

In summary, alternative theories of return predictability struggle to explain the contrast-

ing relationship between uncertainty and the return predictability of EHB. Our purpose is

not to reject all variations of these alternative theories, but to underscore that the primary

empirical result detailed in this paper offers a valuable empirical moment that helps distin-

guish information choice models from these competing theories.

5 Conclusion

This paper studies the relationship between uncertainty and investors’ information ac-

quisition decisions. While existing studies suggest that higher uncertainty increases the

benefits of information acquisition, our paper focuses on how uncertainty is related to the

cost of information acquisition. Our primary contribution is in highlighting that the cost of

information may fluctuate differently in response to cross-sectional variations as opposed to

time-series variations in uncertainty. This differential relationship is critical for understand-

ing how uncertainty influences investors’ choices regarding information acquisition.

Specifically, we introduce and test the Sticky Information Cost (SIC) hypothesis, which

posits that information costs are more closely related to cross-sectional variations in uncer-

tainty than to time-series variations. This hypothesis stems from the observation that the

22Tables A9 and A10 in Appendix B shows that these results are robust to using OIV as well as AIA, a measure
of abnormal investor attention, from Ben-Rephael et al. (2017).
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expenses incurred in processing information for investors are shaped by a firm’s slow-evolving

information environment. Utilizing direct measures for information processing costs and us-

ing the return predictability of analysts’ biases as a proxy for information acquisition, we

find opposite relationships between uncertainty and investors’ information acquisition when

comparing across firms versus over time. These contrasting patterns are robust to using var-

ious uncertainty measures and extend to other earnings-related anomalies, thereby lending

support to the SIC hypothesis. In contrast, alternative theories struggle to offer a unified

explanation of these contrasting patterns. Therefore, our results offer a novel perspective on

return anomalies and underscore the importance of distinguishing between cross-sectional

and time-series variations in uncertainty when modeling investors’ decisions regarding infor-

mation acquisition.
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Figure 5: Correlation Matrix of Information Cost Index Components and IVOL Components

This figure shows the Spearman correlation matrix for the components of the Information Cost
Index and the components of IVOL. As the Information Cost Index consists of measures that
update infrequently (the Bog Index, Complexity, and Net File Size update annually and Firm Age
is slow moving), the analysis is done as of the end of June in each year. The Information Cost Index
is the average of the residual of the normalized rank (i.e., the rank scaled by the number of stocks in
the cross section) of -LN(Firm Age), the Bog Index, and LN(Net File Size), each orthogonalized to
the normalized rank of Size. For comparability, the normalized rank of the IVOL related variables
(IVOL, IVOLMA36, and Abnormal IVOL, IVOL Orth.) are also orthogonalized to the normalized
rank of Size. IVOL Orth. is calculated by regressing IVOL on CIV (demeaned) using a rolling 36-
month window. As CIV does not vary across a given month, CIV related correlations are calculated
by firm and then averaged. The sample period for Firm Age and IVOL (and its components) begins
in June 1990, the annual sample period for the Bog Index and Net File Size begins in June 1996.
All samples end in June 2019.
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Figure 6: Return Predictability of EHB by Uncertainty Terciles

This figure presents the Fama-French Five-Factor alphas for double-sort portfolios created by first
sorting companies into terciles based on various uncertainty measures, then conditionally cross-
sectionally sorting into quintiles based on EHB. Only the EHB Q1-Q5 alpha is shown for each
tercile. The EHB Q1-Q5 portfolios based on IVOL, IVOL Orth., and OIV are made by first
cross-sectionally sorting companies into terciles based on the specific uncertainty measure. The
EHB Q1-Q5 portfolios based on EPU, CIV, and MU are made by sorting observations into terciles
in the time series based on each uncertainty measure. Portfolios are value weighted and are re-
balanced monthly. Q1 (Q5) contains firms with the lowest (highest) values of EHB. T1 (T3) of
each uncertainty tercile contains firms with the lowest (highest) values. Whiskers denote 95%
confidence bands. Standard errors of the resulting regression coefficients are computed based on
Newey and West (1987) with 12 lags. The sample period is from June 1990 to December 2019,
with the exception of OIV which begins in January 1996.
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Table 1: Key Variable Definitions

This table provides the definition of key variables in the analysis.

Variable Definition

Ex-Ante Human Bias (EHB) Analysts’ conditional biases (Analysts’ forecast −MLModel
forecast) (Constant 12 months to Fiscal Period End calcu-
lated as the weighted average of FY1 and FY2). EHB is
scaled by price.

Firm Age Firm Age (months since first trading day)
Size Ln(Market Capitalization) (daily or as of end of month)
Mega Cap Firms with market capitalization above 80th percentile of

NYSE firm size
Small Cap Firms below median NYSE market capitalization
Large Cap Firms above median NYSE market capitalization but not

Mega Cap
IVOL Standard deviation of residuals from CAPM regressions us-

ing the past year of daily data. (Require at least 100 non-
missing observations.)

OIV Average of call and put option implied volatility from the
volatility surface using 30-day maturity and delta=0.5 (-0.5
for put options) on last day of the month

IVOL Orth. The constant obtained from a regression of IVOL on CIV,
by firm, using a 36 month rolling window.

IVOLMA36 Moving Average of IVOL from month t − 35 to t (Trailing
IVOL)

Abnormal IVOL IV OL
IV OLMA36

MU One Month Macro Uncertainty Measure (Ludvigson et al.
(2021))

EPU Economic Policy Uncertainty Index (Baker et al. (2016))
CIV Common Idiosyncratic Volatility Factor, which is the cross-

sectional average of IVOL. The measure is then de-meaned
in the analysis. (Herskovic et al. (2016))

Announcement Return Sum of risk-adjusted returns from two days before an earn-
ings announcement to one day after the announcement

Analysts’ Revision Three-month revision in analysts’ forecasts for one-quarter
ahead earnings forecasts

Bog Index Plain English Readability Measure Applied to 10-Ks (Bon-
sall et al. (2017))

Net File Size File size of 10-K excluding ASCII-encoded insertions,
HTML, and XBRL (Loughran and Mcdonald (2014))

Information Cost Index Average of the cross-sectional normalized ranks of 1/Age,
Bog Index, and Net File Size, each cross-sectionally orthog-
onalized to the normalized rank of Size. The measure is
created in June of year t and is then used until May of year
t+ 1.

EDGAR Downloads Count of human downloads from EDGAR for a given month
(Ryans 2017)

Effective Spread Monthly Average Effective Spread using TAQ data

38



Table 2: IVOL and Information Cost

This table presents the results of pooled OLS regressions of the components of the Information Cost
Index (Firm Age, the Bog Index, and Net File Size) on LN(IVOL) and Size. As the Information
Cost Index consists of measures that update infrequently (the Bog Index and Net File Size update
annually and Firm Age is slow moving), the regressions are run as of the end of June in each year.
Columns 1 and 2 use -LN(Firm Age), columns 3 and 4 use the Bog Index, and columns 5 and 6
use LN(Net File Size). Statistical significance is denoted as ***, **, and * for p<0.10, p<0.05, and
p<0.01, respectively. Standard errors are clustered at the firm and year level. Columns 1, 3, and 5
include firm fixed effects while columns 2, 4, and 6 include time fixed effects. The annual sample
period for Firm Age begins in June 1990, the sample period for the Bog Index and Net File Size
begins in June 1996. All samples end in June 2019.

-LN(Age) Bog Index LN(Net File Size)

(1) (2) (3) (4) (5) (6)

LN(IVOL) 0.233∗∗∗ 1.012∗∗∗ -1.471∗ 3.570∗∗∗ -0.062 0.049∗∗

(3.4) (20.8) (-1.8) (7.9) (-0.9) (2.3)

Size -0.356∗∗∗ -0.148∗∗∗ 2.018∗∗∗ 0.435∗∗∗ 0.141∗∗∗ 0.102∗∗∗

(-16.2) (-11.4) (4.9) (4.4) (5.8) (14.3)

Cons. -1.484∗∗∗ 0.021 62.943∗∗∗ 94.977∗∗∗ 11.547∗∗∗ 12.288∗∗∗

(-6.9) (0.1) (21.0) (56.8) (45.3) (151.0)

Fixed Effects Firm Time Firm Time Firm Time
Observations 53662 54951 40398 41585 39880 41066
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Table 3: IC Index and the Return Predictability of EHB

This table presents the Fama-French Five-Factor alphas for double-sort portfolios created by first
sorting companies into terciles based on the IC index, then conditionally cross-sectionally sorting
into quintiles based on EHB. Portfolios are value weighted and are re-balanced monthly. Standard
errors of the resulting regression coefficients are computed based on Newey and West (1987) with
12 lags. Statistical significance is denoted as ***, **, and * for p<0.10, p<0.05, and p<0.01,
respectively. The sample period is from June 1996 to December 2019.

EHB Q1 EHB Q2 EHB Q3 EHB Q4 EHB Q5 EHB Q1-Q5

IC Index T1 0.120 0.067 0.075 -0.133 -0.106 0.226
(1.01) (0.63) (0.61) (-1.03) (-0.49) (0.78)

IC Index T2 0.426∗∗∗ 0.027 0.032 0.008 -0.326 0.752∗∗

(3.39) (0.31) (0.31) (0.05) (-1.27) (2.34)
IC Index T3 0.368∗∗ -0.007 -0.083 -0.269 -0.686∗∗∗ 1.054∗∗∗

(2.04) (-0.07) (-0.65) (-1.32) (-3.00) (3.23)
IC Index T1-T3 -0.248 0.073 0.158 0.137 0.580∗∗∗ -0.828∗∗

(-1.06) (0.47) (0.81) (0.55) (2.68) (-2.31)
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Table 4: Uncertainty and the Return Predictability of Analysts’ Conditional Biases

This table presents the Fama-French Five-Factor alphas for double-sort portfolios created by first
sorting companies into terciles based on various uncertainty measures, then conditionally cross-
sectionally sorting into quintiles based on EHB. Panel A shows results using EPU, Panel B shows
results using CIV and Panel C shows results using MU. The EHB Q1-Q5 portfolios are made
by first sorting observations into terciles in the time series based on each uncertainty measure.
Portfolios are value weighted and are re-balanced monthly. Q1 (Q5) contains firms with the lowest
(highest) values of the EHB. T1 (T3) of each uncertainty tercile contains firms with the lowest
(highest) values. Standard errors of the resulting regression coefficients are computed based on
Newey and West (1987) with 12 lags. Statistical significance is denoted as ***, **, and * for
p<0.10, p<0.05, and p<0.01, respectively. The sample period is from June 1990 to December
2019, with the exception of OIV which begins in January 1996.

Panel A: EPU

EHB Q1 EHB Q2 EHB Q3 EHB Q4 EHB Q5 EHB Q1-Q5

EPU T1 0.565∗∗∗ -0.073 -0.230∗∗∗ -0.232∗∗ -0.696∗∗∗ 1.261∗∗∗

(4.34) (-0.68) (-4.43) (-2.08) (-2.90) (3.68)
EPU T2 0.258∗ -0.042 -0.033 -0.317∗∗ -0.544∗∗ 0.803∗∗

(1.81) (-0.48) (-0.28) (-2.11) (-2.40) (2.52)
EPU T3 0.082 0.070 0.020 0.013 -0.212 0.294

(0.76) (0.85) (0.24) (0.09) (-0.82) (0.97)
EPU T1-T3 0.483∗∗∗ -0.143 -0.250∗∗∗ -0.245 -0.484 0.967∗

(2.64) (-1.10) (-2.69) (-1.14) (-1.22) (1.84)
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Panel B: CIV

EHB Q1 EHB Q2 EHB Q3 EHB Q4 EHB Q5 EHB Q1-Q5

CIV T1 0.336∗∗∗ -0.004 -0.044 -0.075 -0.443∗∗∗ 0.779∗∗∗

(5.10) (-0.05) (-0.62) (-0.65) (-2.92) (4.30)
CIV T2 -0.043 0.112∗ -0.020 0.031 -0.328 0.285

(-0.33) (1.67) (-0.25) (0.24) (-1.48) (0.87)
CIV T3 0.320 -0.181∗ -0.107 -0.124 0.168 0.152

(1.47) (-1.70) (-1.12) (-0.55) (0.36) (0.24)
CIV T1-T3 0.016 0.177 0.062 0.049 -0.611 0.627

(0.07) (1.39) (0.52) (0.20) (-1.23) (0.96)

Panel C: MU

EHB Q1 EHB Q2 EHB Q3 EHB Q4 EHB Q5 EHB Q1-Q5

MU T1 0.234∗ 0.021 -0.151∗∗ -0.065 -0.458∗∗ 0.692∗∗

(1.82) (0.41) (-2.48) (-0.46) (-1.99) (2.03)
MU T2 0.149 0.060 -0.023 -0.100 -0.227 0.377∗

(1.10) (0.66) (-0.25) (-0.95) (-1.30) (1.70)
MU T3 0.165 -0.204∗∗ 0.012 0.042 0.147 0.018

(0.97) (-2.28) (0.14) (0.21) (0.35) (0.03)
MU T1-T3 0.069 0.224∗∗ -0.163 -0.107 -0.605 0.674

(0.36) (2.20) (-1.56) (-0.44) (-1.27) (1.10)
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Table 5: Cross Sectional Uncertainty and the Return Predictability of Analysts’ Conditional Biases

This table presents the Fama-French Five-Factor alphas for double-sort portfolios created by first
sorting companies into terciles based on various uncertainty measures, then conditionally cross-
sectionally sorting into quintiles based on EHB. Panel A shows results using IVOL, Panel B shows
results using IVOL Orth. and Panel C shows results using OIV. The EHB Q1-Q5 portfolios are
made by first sorting observations into terciles in the time series based on each uncertainty measure.
Portfolios are value weighted and are re-balanced monthly. Q1 (Q5) contains firms with the lowest
(highest) values of the EHB. T1 (T3) of each uncertainty tercile contains firms with the lowest
(highest) values. Standard errors of the resulting regression coefficients are computed based on
Newey and West (1987) with 12 lags. Statistical significance is denoted as ***, **, and * for
p<0.10, p<0.05, and p<0.01, respectively. The sample period is from June 1990 to December
2019, with the exception of OIV which begins in January 1996.

Panel A: IVOL

EHB Q1 EHB Q2 EHB Q3 EHB Q4 EHB Q5 EHB Q1-Q5

IVOL T1 0.096 0.018 -0.040 -0.046 -0.159 0.254
(1.21) (0.24) (-0.71) (-0.59) (-1.24) (1.47)

IVOL T2 0.337∗∗ -0.027 -0.172∗ -0.199 -0.283 0.620∗∗

(2.29) (-0.28) (-1.91) (-1.37) (-1.30) (2.06)
IVOL T3 0.638∗∗ 0.275 0.029 -0.418∗∗ -0.914∗∗∗ 1.551∗∗∗

(2.52) (1.62) (0.22) (-2.30) (-3.57) (3.85)
IVOL T1-T3 -0.542∗∗ -0.256 -0.069 0.372∗∗ 0.755∗∗∗ -1.297∗∗∗

(-2.14) (-1.26) (-0.45) (2.05) (3.07) (-3.84)

43



Panel B: CIV

EHB Q1 EHB Q2 EHB Q3 EHB Q4 EHB Q5 EHB Q1-Q5

IVOL Orth. T1 -0.043 0.007 -0.128∗∗ 0.008 -0.145 0.102
(-0.50) (0.09) (-2.04) (0.08) (-0.97) (0.54)

IVOL Orth. T2 0.369∗∗ -0.141 -0.142 -0.180 -0.239 0.608∗∗

(2.45) (-1.39) (-1.34) (-1.29) (-1.00) (1.99)
IVOL Orth. T3 0.595∗∗ 0.266∗∗ 0.052 -0.241 -0.440∗∗ 1.035∗∗

(1.97) (1.99) (0.36) (-1.39) (-2.08) (2.55)
IVOL Orth. T1-T3 -0.638∗ -0.259 -0.180 0.249 0.295∗ -0.933∗∗

(-1.87) (-1.42) (-1.02) (1.39) (1.65) (-2.53)

Panel C: MU

EHB Q1 EHB Q2 EHB Q3 EHB Q4 EHB Q5 EHB Q1-Q5

OIV T1 0.160∗∗ -0.009 -0.066 -0.063 -0.063 0.223
(2.12) (-0.10) (-0.99) (-0.73) (-0.48) (1.39)

OIV T2 0.359∗ 0.057 -0.176 -0.189 -0.316 0.675∗

(1.82) (0.43) (-1.11) (-1.36) (-1.29) (1.85)
OIV T3 0.450 0.217 -0.014 -0.415∗ -1.002∗∗∗ 1.453∗∗∗

(1.39) (1.32) (-0.07) (-1.70) (-3.63) (2.76)
OIV T1-T3 -0.290 -0.226 -0.052 0.352 0.940∗∗∗ -1.230∗∗∗

(-0.87) (-1.08) (-0.25) (1.32) (3.88) (-2.59)
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Table 6: Firm Size and the Return Predictability of EHB

This table presents the Fama-French Five-Factor alphas for double-sort portfolios created by first
sorting companies into groups based on their market value of equity, then conditionally cross-
sectionally sorting into quintiles based on EHB. The market value of equity groups divide the firms
into mega-cap, large-cap, and small-cap groups. Mega-cap firms are defined as firms with market
capitalization greater than the 80th percentile of firm sizes on the NYSE. The remaining firms are
then defined as small or large cap based on whether their size is above the median NYSE market
capitalization. Portfolios are value weighted and are re-balanced monthly. Standard errors of the
resulting regression coefficients are computed based on Newey and West (1987) with 12 lags. Q1
indicates the lowest values and Q5 the highest values for EHB. Statistical significance is denoted
as ***, **, and * for p<0.10, p<0.05, and p<0.01, respectively. Values are shown in percentage
terms. The sample period is from June 1990 to December 2019.

EHB Q1 EHB Q2 EHB Q3 EHB Q4 EHB Q5 EHB Q1-Q5

Small Cap 0.288∗∗∗ 0.225∗∗∗ -0.015 -0.031 -0.681∗∗∗ 0.968∗∗∗

(3.13) (3.77) (-0.20) (-0.33) (-4.19) (4.16)
Large Cap 0.319∗∗∗ 0.139 -0.075 -0.089 -0.381∗∗ 0.700∗∗∗

(2.71) (1.62) (-1.01) (-0.89) (-2.28) (2.85)
Mega Cap 0.214∗∗ 0.055 -0.106∗ -0.062 -0.094 0.308

(2.26) (0.81) (-1.80) (-0.94) (-0.74) (1.55)
Small-Mega 0.074 0.170∗∗ 0.091 0.031 -0.587∗∗∗ 0.660∗∗∗

(0.75) (1.99) (0.98) (0.31) (-5.48) (3.94)
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Table 7: Return Predictability of Announcement Return by Uncertainty Terciles: Mega and Non-
Mega Cap

This table presents the Fama-French Five-Factor alphas for double-sort portfolios created by first
sorting companies into terciles based on various uncertainty measures, then conditionally cross-
sectionally sorting into quintiles based on Announcement Returns. Only the Announcement Return
Q5-Q1 alpha is shown for each tercile. Panel A uses only firms in the non-mega-cap subsample,
while Panel B uses only firms in the mega-cap sample. The Announcement Return Q5-Q1 portfolios
based on IVOL, IVOL Orth and OIV are made by cross-sectionally sorting companies into terciles
based on each uncertainty measure. The Announcement Return Q5-Q1 portfolios based on EPU,
CIV, and MU are made by sorting observations into terciles in the time series based on each
uncertainty measure. Portfolios are value weighted and are re-balanced monthly. Q1 (Q5) contains
firms with the lowest (highest) values of Announcement Return. T1 (T3) of each uncertainty
tercile contains firms with the lowest (highest) values. Standard errors of the resulting regression
coefficients are computed based on Newey and West (1987) with 12 lags. The sample period is
from June 1990 to December 2019, with the exception of OIV which begins in January 1996.

Panel A: Non-Mega-Cap

IVOL IVOL Orth. OIV EPU CIV MU

T1 0.325∗∗∗ 0.246∗∗∗ 0.310∗∗∗ 0.760∗∗∗ 0.464∗∗∗ 0.656∗∗∗

(3.92) (2.78) (3.14) (5.39) (4.99) (4.96)
T2 0.455∗∗∗ 0.342∗∗∗ 0.368∗∗∗ 0.643∗∗∗ 0.556∗∗∗ 0.629∗∗∗

(3.88) (2.85) (3.00) (3.88) (2.63) (3.61)
T3 1.042∗∗∗ 0.829∗∗∗ 0.575∗∗∗ 0.483∗∗ 0.713∗∗∗ 0.273

(5.42) (3.81) (2.66) (2.50) (3.90) (1.37)
T1-T3 -0.717∗∗∗ -0.583∗∗∗ -0.265 0.276 -0.249 0.384

(-4.10) (-2.72) (-1.13) (1.13) (-1.21) (1.57)

Panel B: Mega-Cap

IVOL IVOL Orth. OIV EPU CIV MU

T1 -0.021 0.010 -0.041 0.848∗∗∗ 0.292∗ 0.265∗

(-0.14) (0.07) (-0.31) (3.36) (1.79) (1.95)
T2 0.149 0.171 0.280 0.351 0.349∗ 0.372∗

(1.06) (1.06) (1.40) (1.46) (1.89) (1.90)
T3 0.815∗∗ 0.720∗∗∗ 0.837∗∗ 0.161 0.524 0.530

(2.44) (2.85) (2.32) (0.74) (1.44) (1.25)
T1-T3 -0.835∗∗∗ -0.710∗∗∗ -0.878∗∗ 0.687∗∗ -0.231 -0.264

(-2.60) (-2.63) (-2.04) (2.03) (-0.54) (-0.66)
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Table 8: Return Predictability of Analysts’ Revisions by Uncertainty Terciles: Mega and Non-Mega
Cap

This table presents the Fama-French Five-Factor alphas for double-sort portfolios created by first
sorting companies into terciles based on various uncertainty measures, then conditionally cross-
sectionally sorting into quintiles based on Analysts’ Revisions. Only the Analysts’ Revisions Q5-
Q1 alpha is shown for each tercile. Panel A uses only firms in the non-mega-cap subsample, while
Panel B uses only firms in the mega-cap sample. The Analysts’ Revisions Q5-Q1 portfolios based
on IVOL, IVOL Orth and OIV are made by cross-sectionally sorting companies into terciles based
on each uncertainty measure. The Analysts’ Revisions Q5-Q1 portfolios based on EPU, CIV, and
MU are made by sorting observations into terciles in the time series based on each uncertainty
measure. Portfolios are value weighted and are re-balanced monthly. Q1 (Q5) contains firms with
the lowest (highest) values of Analysts’ Revisions. T1 (T3) of each uncertainty tercile contains
firms with the lowest (highest) values. Standard errors of the resulting regression coefficients are
computed based on Newey and West (1987) with 12 lags. The sample period is from June 1990 to
December 2019, with the exception of OIV which begins in January 1996.

Panel A: Non-Mega-Cap

IVOL IVOL Orth. OIV EPU CIV MU

T1 0.200 0.105 0.093 0.912∗∗∗ 0.489∗∗∗ 0.667∗∗∗

(1.47) (0.62) (0.56) (4.29) (3.08) (3.78)
T2 0.426∗∗ 0.185 0.148 0.522∗∗ 0.824∗∗∗ 0.421∗∗

(2.03) (0.67) (0.53) (2.33) (2.97) (2.00)
T3 0.684∗∗ 0.303 0.489 -0.107 -0.283 -0.101

(2.19) (1.22) (1.34) (-0.39) (-0.58) (-0.24)
T1-T3 -0.483∗ -0.198 -0.396 1.019∗∗ 0.772 0.768∗

(-1.91) (-0.97) (-1.27) (2.27) (1.48) (1.74)

Panel B: Mega-Cap

IVOL IVOL Orth. OIV EPU CIV MU

T1 -0.091 0.008 0.066 0.744∗∗ 0.554∗∗∗ 0.528∗

(-0.44) (0.04) (0.38) (2.47) (2.76) (1.89)
T2 0.321∗ 0.008 0.285 0.570∗ 0.013 0.359∗

(1.65) (0.03) (1.34) (1.76) (0.05) (1.69)
T3 1.074∗∗∗ 0.852∗∗∗ 0.890∗∗ 0.365 0.740∗ 0.303

(3.74) (4.91) (2.30) (1.08) (1.95) (1.08)
T1-T3 -1.166∗∗∗ -0.843∗∗∗ -0.824∗ 0.379 -0.186 0.226

(-3.33) (-3.30) (-1.82) (0.75) (-0.43) (0.58)
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Table 9: Testing Alternative Theories

This table presents the results of monthly regressions of |EHB|, EDGAR Downloads, or Effective
Spread on the measures of uncertainty. The |EHB| and Effective Spread analysis use pooled OLS
regressions. As EDGAR Downloads are a count measure, a pseudo-Poisson regression is used
instead of a pooled OLS regression. Columns 1, 3, and 5 include only Size as a control, and
columns 2, 4, and 6 add Firm Age and an indicator equal to one in earnings-announcement months.
Standard errors are clustered at the firm and month level. Statistical significance is denoted as
***, **, and * for p<0.10, p<0.05, and p<0.01, respectively. The sample period for |EHB| is from
June 1990 to December 2019. The sample for EDGAR Downloads begins in April 2003 and ends in
December 2017. The sample for Effective Spread begins in September 2003 and ends in December
2019.

|EHB| EDGAR Downloads Eff. Spread

Size -0.167∗∗∗ -0.190∗∗∗ 0.622∗∗∗ 0.634∗∗∗ -3.280∗∗∗ -3.237∗∗∗

(-12.1) (-13.1) (8.9) (8.2) (-22.2) (-21.2)

EPU 0.002∗∗∗ 0.002∗∗∗ 0.004∗∗∗ 0.004∗∗∗ -0.003 -0.003
(3.9) (3.7) (4.7) (4.7) (-0.7) (-0.6)

LN(IVOL) 0.651∗∗∗ 0.773∗∗∗ 0.514∗∗∗ 0.464∗∗∗ 4.467∗∗∗ 4.248∗∗∗

(17.8) (18.5) (5.9) (8.1) (6.7) (6.2)

LN(Age) 0.151∗∗∗ -0.081 -0.324∗∗

(11.4) (-1.2) (-2.0)

Earn. Annc. 0.054∗∗∗ 0.106∗∗ 0.036
(2.8) (2.3) (0.1)

Observations 626852 626852 279235 279235 320627 320627
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A Appendix A: EHB Construction

A.1 Calculating EHB

To create our composite EHB measure, we first generate forecasts for the next quarter
(FQ), one year ahead (FY1), and two years ahead (FY2) earnings using machine learning.
We then take the weighted average of the FY1 and FY2 EHB so that the average distance
between the forecast and the corresponding FY1/FY2 fiscal period ends is 12 months. We
require FY2 EHB to be non-missing. Additionally, we place all the weight on FY1 if the
distance to the fiscal year end from the FY1 forecast is 12 months. If the distance to the
FY1 fiscal year end is less than zero (i.e. the firm has had their fiscal year end, but the
earnings announcement has not happened, we put a weight of zero on the FY1 forecast.Our
results are robust to alternative methods of calculating EHB such as taking the average of
FQ, FY1, and FY2 forecasts.

A.2 Input Dataset Construction

Tables A1 and A2 show the variables used in generating the machine learning forecasts.
We utilize the methodology in Campbell et al. (2023) to generate the EHB forecasts using
their suggested best specification. Please refer to their paper for a more detailed description
of the data generation process.

We apply the same key filters used in Campbell et al. (2023). Specifically, we require
returns, market capitalization, the two momentum variables, the current analysts’ forecast,
the most recently realized earnings, the stock price, and price-to-sales to be non-missing.23

Since analysts’ forecasts contain private information that adds incremental predictive power
for earnings relative to financial statement variables (van Binsbergen et al., 2022; de Silva
and Thesmar, 2022), we also include analysts’ forecast-related variables in our predictor set
as shown in Table A2.

23The requirement of non-missing current analysts’ forecast, the most recently realized earnings, stock price, and
price-to-sales follows from (Bradshaw et al., 2012).
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Table A1: WRDS Financial Ratio Variables

This table provides the definitions of WRDS Financial Ratio Variables. Following van Binsbergen
et al. (2022), we exclude Forward P/E to 1-year Growth (PEG) ratio, Forward P/E to Long-
term Growth (PEG) ratio, Price/Operating Earnings (Basic, Excl. Extraordinary Income), and
Price/Operating Earnings (Diluted, Excl. Extraordinary Income) from the WRDS Financial Suite
Ratios due to the large number of missing observations.

Acronym Definition Acronym Definition

accrual Accruals/Average Assets int totdebt Interest/Average Total Debt
adv sale Advertising Expenses/Sales inv turn Inventory Turnover
aftret eq After-tax Return on Average Common Equity invt act Inventory/Current Assets
aftret equity After-tax Return on Total Stockholders Equity lt debt Long-term Debt/Total Liabilities
aftret invcapx After-tax Return on Invested Capital lt ppent Total Liabilities/Total Tangible Assets
at turn Asset Turnover npm Net Profit Margin
bm Book/Market ocf lct Operating Cash Flow/Current Liabilities
capei Shiller’s Cyclically Adjusted P/E Ratio opmad Operating Profit Margin After Depreciation
capital ratio Capitalization Ratio opmbd Operating Profit Margin Before Depreciation
cash conversion Cash Conversion Cycle (Days) pay turn Payables Turnover
cash debt Cash Flow/Total Debt pcf Price/Cash Flow
cash lt Cash Balance/Total Liabilities pe exi P/E (Diluted, Excl. EI)
cash ratio Cash Ratio pe inc P/E (Diluted, Incl. EI)
cfm Cash Flow Margin peg trailing Trailing P/E to Growth (PEG) ratio
curr debt Current Liabilities/Total Liabilities pretret earnat Pre-tax Return on Total Earning Assets
curr ratio Current Ratio pretret noa Pre-tax Return on Net Operating Assets
de ratio Total Debt/Total Equity profit lct Profit Before Depreciation/Current Liabilities
debt assets Total Debt/Total Assets ps Price/Sales
debt at Total Debt/Total Assets ptb Price/Book
debt capital Total Debt/Total Capital ptpm Pre-Tax Profit margin
debt ebitda Total Debt/EBITDA quick ratio Quick Ratio
debt invcap Long-term Debt/Invested Capital rd sale Research and Development/Sales
divyield Dividend Yield rect act Receivables/Current Assets
dltt be Long-term Debt/Book Equity rect turn Receivables Turnover
dpr Dividend Payout Ratio roa Return on Assets
efftax Effective Tax Rate roce Return on Capital Employed
equity invcap Common Equity/Invested Capital roe Return on Equity
evm Enterprise Value Multiple sale equity Sales/Stockholders Equity
fcf ocf Free Cash Flow/Operating Cash Flow sale invcap Sales/Invested Capital
gpm Gross Profit Margin sale nwc Sales/Working Capital
gprof Gross Profit/Total Assets short debt Short-Term Debt/Total Debt
int debt Interest/Average Long-term Debt staff sale Labor Expenses/Sales
intcov After-tax Interest Coverage totdebt invcap Total Debt/Invested Capital
intcov ratio Interest Coverage Ratio
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Table A2: Other Variables

This table provides the definitions of the other variables used in generating our ML predictions
that are not included in the WRDS Financial Ratio Suite. EPS and ErrAF are target variables,
while all other variables are additional predictors.

Acronym Definition

EPS (FY1/FY2) Realized earnings per share
ErrAF (FY1/FY2) Realized EPS − Analysts’ forecast as of current month
medest2 Analysts’ consensus forecast for FY2 horizon
medestqtr Analysts’ consensus forecast for FQ horizon
ibes earnings ann Most recently realized annual earnings as of current month
ibes earnings qtr Most recently realized quarterly earnings as of current month
last F2ana fe med Most recently realized FY2 horizon analysts’ forecast error as of current month
last Fqtrana fe med Most recently realized FQ horizon analysts’ forecast error as of current month
rev FY2 3m Revision of analysts’ FY2 horizon forecast between current month and 3 months prior
rev FYqtr 3m Revision of analysts’ FQ horizon forecast between current month and 3 months prior
dist2 Distance between FY2 fiscal period end and current month
distqtr Distance between FQ fiscal period end and current month
ret Stock return
prc Stock price
size LN(Market Capitalization)
mom6m 6-month momentum
indmom Industry weighted 6-month momentum
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A.3 ML Forecast Timing

We construct our train and test datasets carefully to ensure no data leakage. At the end
of each month t, for each stock i, and for a specific forecast horizon τ , we construct the earn-
ings prediction. The target variable of interest is the analysts’ quarterly, one-year-, or two-
year-ahead forecast error (i.e., the realized errors of analysts’ forecasts made at month t).24

In our training set, we make sure that both the target variable and the predictors
are known at month t. Specifically, that means the realized earnings used in constructing
the target variable are known/announced before or during month t. After we fit the model,
including selecting the optimal hyperparameters, we use the fitted model to generate earnings
predictions at month t.

A.4 Machine Learning Methodology

We use the gradient-boosted regression tree model implemented using LightGBM (LGBM),
a popular, off-the-shelf machine learning algorithm, as our main statistical forecasting model,
as it provides the best outcome for predicting future earnings (Campbell et al., 2023). LGBM
is a nonlinear nonparametric ensemble model which combines the predictions of many de-
cision trees. In a process known as boosting, trees are grown sequentially to correct the
prediction error from the previous iteration (Friedman, 2001). The weighted average of
these individual tree models is the final predictor.

Our forecasts begin in June 1990 to allow for enough data to be available for the first
training window. We train our model’s hyperparameters using cross-validation, which splits
the data in the training window into subsets (creating a training subset and validation
subset). Then, various combinations of the hyperparameters are tested to identify the best
combination. The ML model is then fit to the data using the selected hyperparameters and
forecasts are made using out-of-sample data to ensure no lookahead bias.

24For analysts’ forecasts from I/B/E/S, we use the consensus median forecasts as of the latest IBES statistical
period, STATPERS, before the end of month t.
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B Appendix B: Robustness Analysis Correlation

Figure A1: Correlation Matrix of Information Cost Index Components and OIV Components

This figure shows the Spearman correlations for the components of the Information Cost Index
and the components of IVOL. As the Information Cost Index consists of measures that update
infrequently (the Bog Index, Complexity, and Net File Size update annually and Firm Age is slow
moving), the analysis is done as of the end of June in each year. The Information Cost Index is
the average of the residual of the normalized rank (i.e., the rank scaled by the number of stocks in
the cross section) of -LN(Firm Age), the Bog Index, and LN(Net File Size), each orthogonalized to
the normalized rank of Size. For comparability, the normalized rank of the OIV related variables
(OIV, OIVMA36, Abnormal OIV, and OIV Orth.) are also orthogonalized to the normalized rank
of Size. OIV Orth. is calculated by regressing OIV on demeaned OIV using a rolling 36-month
window. As OIV does not vary across a given month, OIV related correlations are calculated by
firm and then averaged. The sample period begins in June 1996, with the exception of OIVMA36,
Abnormal OIV, and OIV Orth. which begin in June 1998. All samples end in June 2019.
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Figure A2: Return Predictability of EHB and Alternative Variables

This figure presents the Fama-French Five-Factor alphas for double-sort portfolios created by first
sorting companies into terciles based on various uncertainty measures, then conditionally cross-
sectionally sorting into quintiles based on EHB. Only the EHB Q1-Q5 alpha is shown for each
tercile. The EHB Q1-Q5 portfolios based on IV OLMA36 abnormal IVOL, and OIV Orth are
made by first cross-sectionally sorting companies into terciles based on the specific uncertainty
measure. The EHB Q1-Q5 portfolios based on COIV are made by sorting observations into terciles
in the time series based on each uncertainty measure. Portfolios are value weighted and are re-
balanced monthly. Q1 (Q5) contains firms with the lowest (highest) values of EHB. T1 (T3) of
each uncertainty tercile contains firms with the lowest (highest) values. Whiskers denote 95%
confidence bands. Standard errors of the resulting regression coefficients are computed based on
Newey and West (1987) with 12 lags. The sample period is from June 1990 to December 2019,
with the exception of OIV which begins in January 1996.
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Table A3: Information Cost Index Components’ Persistence

This table presents the results of panel regressions of the Bog Index, LN(Net File Size), and -
LN(Firm Age) on their one-year lagged values. We use the values at the end of June in each year.
Statistical significance is denoted as ***, **, and * for p<0.10, p<0.05, and p<0.01, respectively.
Standard errors are clustered by firm and year. The sample period for Firm Age begins in June
1990, and the sample period for the Bog Index and Net File Size begins in June 1996. All samples
end in June 2019.

(1) (2) (3)
-LN(Firm Age) Bog Index LN(Net File Size)

-LN(Firm Age)(t-1) 0.875∗∗∗

(325.7)

Bog Index(t-1) 0.916∗∗∗

(44.5)

LN(Net File Size) (t-1) 0.647∗∗∗

(37.9)

Cons. -0.755∗∗∗ 7.651∗∗∗ 4.588∗∗∗

(-53.1) (4.7) (21.2)

Observations 45991 33667 33063
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Table A4: OIV and Information Cost

This table presents the results of pooled OLS regressions of LN(OIV) on the components of the
Information Cost Index (Firm Age, the Bog Index, and Net File Size) and Size. As the Information
Cost Index consists of measures that update infrequently (the Bog Index and Net File Size update
annually and Firm Age is slow moving), the regressions are run as of the end of June in each year.
Columns 1 and 2 use -LN(Firm Age), columns 3 and 4 use the Bog Index, and columns 5 and 6
use LN(Net File Size). Statistical significance is denoted as ***, **, and * for p<0.10, p<0.05, and
p<0.01, respectively. Standard errors are clustered at the firm and year level. Columns 1, 3, and 5
include firm fixed effects while columns 2, 4, and 6 include time fixed effects. The annual sample
period for Firm Age begins in June 1990, and the sample period for the Bog Index and Net File
Size begins in June 1996. All samples end in June 2019.

-LN(Age) Bog Index LN(Net File Size)

(1) (2) (3) (4) (5) (6)

LN(OIV) 0.234∗∗∗ 0.899∗∗∗ -1.043 3.360∗∗∗ -0.035 0.044∗

(3.1) (13.2) (-1.4) (6.3) (-0.6) (1.7)

Size -0.283∗∗∗ -0.148∗∗∗ 1.865∗∗∗ 0.230∗ 0.117∗∗∗ 0.095∗∗∗

(-8.2) (-8.8) (4.9) (2.0) (5.1) (12.6)

Cons. -2.661∗∗∗ -3.033∗∗∗ 69.139∗∗∗ 86.647∗∗∗ 11.970∗∗∗ 12.229∗∗∗

(-11.4) (-26.6) (26.1) (101.1) (65.7) (233.1)

Fixed Effects Firm Time Firm Time Firm Time
Observations 36966 37911 34975 35905 34498 35415
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Table A5: Variations in IVOL and the Return Predictability of Analysts’ Conditional Biases

This table presents the Fama-French Five-Factor alphas for double-sort portfolios created by first
sorting companies into terciles based on various uncertainty measures, then conditionally cross-
sectionally sorting into quintiles based on EHB. The EHB Q1-Q5 portfolios based on IV OLMA36

abnormal IVOL, and OIV Orth are made by first cross-sectionally sorting companies into terciles
based on the specific uncertainty measure. The EHB Q1-Q5 portfolios based on COIV are made by
sorting observations into terciles in the time series based on each uncertainty measure. Portfolios are
value weighted and are re-balanced monthly. Standard errors of the resulting regression coefficients
are computed based on Newey and West (1987) with 12 lags. Statistical significance is denoted as
***, **, and * for p<0.10, p<0.05, and p<0.01, respectively. The sample period is from June 1990
to December 2019, with the exception of OIV Orth, and COIV which begin in January 1996.

Panel A: IVOLMA36

EHB Q1 EHB Q2 EHB Q3 EHB Q4 EHB Q5 EHB Q1-Q5

IVOLMA36 T1 0.024 -0.029 -0.193∗∗∗ 0.006 -0.194 0.218
(0.32) (-0.31) (-2.76) (0.06) (-1.38) (1.29)

IVOLMA36 T2 0.357∗∗ 0.060 -0.123 -0.158 -0.267 0.624∗

(2.20) (0.58) (-1.10) (-1.14) (-1.15) (1.90)
IVOLMA36 T3 0.700∗∗ 0.249∗ 0.175 -0.245 -0.445∗ 1.145∗∗∗

(2.27) (1.78) (1.21) (-1.44) (-1.92) (2.64)
IVOLMA36 T1-T3 -0.675∗∗ -0.279 -0.368∗∗ 0.250 0.251 -0.926∗∗

(-2.03) (-1.53) (-2.05) (1.41) (1.24) (-2.39)

Panel B: Abnormal IVOL

EHB Q1 EHB Q2 EHB Q3 EHB Q4 EHB Q5 EHB Q1-Q5

Ab. IVOL T1 0.496∗∗∗ 0.328∗∗ 0.023 -0.028 -0.192 0.687∗∗

(2.67) (2.54) (0.21) (-0.25) (-0.95) (2.28)
Ab. IVOL T2 0.078 -0.015 -0.108 0.099 -0.298 0.376

(0.82) (-0.17) (-1.53) (0.78) (-1.36) (1.49)
Ab. IVOL T3 -0.069 -0.131 -0.232∗∗ -0.051 -0.356 0.287

(-0.58) (-1.39) (-2.09) (-0.28) (-1.37) (0.97)
Ab. IVOL T1-T3 0.565∗∗ 0.458∗∗∗ 0.255 0.023 0.164 0.401

(2.35) (2.58) (1.46) (0.10) (0.56) (1.16)
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Panel C: OIV Orth

EHB Q1 EHB Q2 EHB Q3 EHB Q4 EHB Q5 EHB Q1-Q5

OIV Orth. T1 0.068 0.005 -0.152∗∗ 0.042 0.044 0.024
(0.75) (0.05) (-2.15) (0.39) (0.30) (0.13)

OIV Orth. T2 0.151 0.088 -0.088 -0.112 -0.383 0.533
(0.77) (0.65) (-0.55) (-0.65) (-1.48) (1.41)

OIV Orth. T3 0.311 0.161 0.085 -0.020 -0.230 0.541
(0.97) (0.93) (0.50) (-0.08) (-0.69) (1.10)

OIV Orth. T1-T3 -0.243 -0.156 -0.237 0.062 0.274 -0.518
(-0.70) (-0.69) (-1.35) (0.24) (0.92) (-1.18)

Panel D: COIV

EHB Q1 EHB Q2 EHB Q3 EHB Q4 EHB Q5 EHB Q1-Q5

COIV T1 0.301∗∗∗ 0.002 -0.074 -0.078 -0.308 0.608∗∗

(2.70) (0.01) (-1.28) (-0.49) (-1.61) (2.16)
COIV T2 0.231 -0.038 0.019 -0.079 -0.457 0.689

(0.91) (-0.55) (0.23) (-0.35) (-1.38) (1.21)
COIV T3 0.045 -0.166 0.028 0.155 0.317 -0.272

(0.15) (-1.25) (0.20) (0.59) (0.65) (-0.40)
COIV T1-T3 0.256 0.168 -0.102 -0.234 -0.625 0.881

(0.80) (1.04) (-0.75) (-0.80) (-1.24) (1.22)
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Table A6: Return Predictability of EHB by Uncertainty Terciles: Mega and Non-Mega Cap

This table presents the Fama-French Five-Factor alphas for double-sort portfolios created by first
cross-sectionally sorting companies into terciles based on various uncertainty measures, then con-
ditionally cross-sectionally sorting into quintiles based on EHB. Only the EHB Q1-Q5 alpha is
shown for each tercile. Panel A uses only firms in the non-mega-cap subsample, while Panel B uses
only firms in the mega-cap sample. The EHB Q1-Q5 portfolios based on OIV, IVOL, IVOLMA36,
and abnormal IVOL are made by cross-sectionally sorting companies into terciles based on each
uncertainty measure. The EHB Q1-Q5 portfolios based on MU and EPU are made by sorting
observations into terciles in the time series based on each uncertainty measure. Portfolios are value
weighted and are re-balanced monthly. Q1 (Q5) contains firms with the lowest (highest) values of
EHB. T1 (T3) of each uncertainty tercile contains firms with the lowest (highest) values. Standard
errors of the resulting regression coefficients are computed based on Newey and West (1987) with
12 lags. The sample period is from June 1990 to December 2019, with the exception of OIV which
begins in January 1996.

Panel A: Non-Mega-Cap

OIV Orth. IVOLMA36 COIV Ab. IVOL

T1 -0.065 0.054 0.682∗∗ 0.773∗∗∗

(-0.30) (0.29) (2.45) (3.26)
T2 0.236 0.602∗∗ 0.974∗∗ 0.573∗∗

(0.75) (2.41) (2.29) (2.06)
T3 0.721∗ 1.198∗∗∗ -0.154 0.598∗∗

(1.66) (3.30) (-0.25) (2.03)
T1-T3 -0.786∗∗ -1.144∗∗∗ 0.836 0.175

(-2.05) (-3.13) (1.29) (0.79)
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Panel B: Mega-Cap

OIV Orth. IVOLMA36 COIV Ab. IVOL

T1 -0.202 -0.204 0.314 0.331
(-0.92) (-0.89) (1.07) (1.55)

T2 0.059 0.358 0.485 -0.277
(0.28) (1.61) (0.78) (-1.02)

T3 0.514 0.604 -0.534 0.344
(1.40) (1.64) (-0.93) (1.22)

T1-T3 -0.716∗ -0.807∗ 0.848 -0.013
(-1.66) (-1.71) (1.35) (-0.05)

Table A7: Return Predictability of Announcement Return by Alternative Uncertainty Terciles:
Mega and Non-Mega Cap

This table presents the Fama-French Five-Factor alphas for double-sort portfolios created by first
sorting companies into terciles based on various uncertainty measures, then conditionally cross-
sectionally sorting into quintiles based on Announcement Returns. Only the Announcement Return
Q5-Q1 alpha is shown for each tercile. Panel A uses only firms in the non-mega-cap subsample,
while Panel B uses only firms in the mega-cap sample. The Announcement Return Q5-Q1 portfolios
based on OIV Orth, IvolMA36 and Abnormal IVOL are made by cross-sectionally sorting companies
into terciles based on each uncertainty measure. The Announcement Return Q5-Q1 portfolios based
on COIV are made by sorting observations into terciles in the time series based on each uncertainty
measure. Portfolios are value weighted and are re-balanced monthly. Q1 (Q5) contains firms with
the lowest (highest) values of Announcement Return. T1 (T3) of each uncertainty tercile contains
firms with the lowest (highest) values. Standard errors of the resulting regression coefficients are
computed based on Newey and West (1987) with 12 lags. The sample period is from June 1990 to
December 2019, with the exception of OIV Orth and COIV which begin in January 1996.

Panel A: Non-Mega-Cap

OIV Orth. IVOLMA36 COIV Ab. IVOL

T1 0.153 0.299∗∗∗ 0.482∗∗∗ 0.669∗∗∗

(1.31) (3.42) (5.19) (4.95)
T2 0.213 0.353∗∗∗ 0.483∗∗ 0.396∗∗∗

(1.43) (2.62) (2.32) (2.76)
T3 0.298 0.804∗∗∗ 0.349 0.382∗∗

(1.10) (4.00) (1.48) (2.39)
T1-T3 -0.145 -0.506∗∗∗ 0.133 0.288

(-0.58) (-2.59) (0.46) (1.62)
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Panel B: Mega-Cap

OIV Orth. IVOLMA36 COIV Ab. IVOL

T1 -0.230 0.019 0.222 0.225
(-1.64) (0.12) (1.41) (1.37)

T2 0.096 0.176 0.470∗∗ 0.297
(0.54) (0.90) (2.04) (1.38)

T3 0.854∗∗ 0.786∗∗∗ 0.264 0.439∗∗

(2.40) (2.61) (0.63) (2.21)
T1-T3 -1.083∗∗ -0.767∗∗ -0.042 -0.215

(-2.52) (-2.15) (-0.10) (-0.96)
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Table A8: Return Predictability of Analysts’ Revisions by Alternative Uncertainty Terciles: Mega
and Non-Mega Cap

This table presents the Fama-French Five-Factor alphas for double-sort portfolios created by first
sorting companies into terciles based on various uncertainty measures, then conditionally cross-
sectionally sorting into quintiles based on Analysts’ Revisions. Only the Analysts’ Revisions Q5-Q1
alpha is shown for each tercile. Panel A uses only firms in the non-mega-cap subsample, while Panel
B uses only firms in the mega-cap sample. The Analysts’ Revisions Q5-Q1 portfolios based on OIV
Orth, IvolMA36 and Abnormal IVOL are made by cross-sectionally sorting companies into terciles
based on each uncertainty measure. The Analysts’ Revisions Q5-Q1 portfolios based on COIV are
made by sorting observations into terciles in the time series based on each uncertainty measure.
Portfolios are value weighted and are re-balanced monthly. Q1 (Q5) contains firms with the lowest
(highest) values of Analysts’ Revisions. T1 (T3) of each uncertainty tercile contains firms with the
lowest (highest) values. Standard errors of the resulting regression coefficients are computed based
on Newey and West (1987) with 12 lags. The sample period is from June 1990 to December 2019,
with the exception of OIV Orth and COIV which begin in January 1996.

Panel A: Non-Mega-Cap

OIV Orth. IVOLMA36 COIV Ab. IVOL

T1 -0.104 0.139 0.651∗∗∗ 0.396∗∗

(-0.51) (0.84) (4.05) (2.48)
T2 -0.029 0.275 0.832∗∗ 0.105

(-0.09) (1.09) (2.15) (0.45)
T3 -0.059 0.271 -0.892 0.150

(-0.17) (0.91) (-1.62) (0.53)
T1-T3 -0.045 -0.132 1.543∗∗∗ 0.246

(-0.15) (-0.51) (2.64) (1.01)

Panel B: Mega-Cap

OIV Orth. IVOLMA36 COIV Ab. IVOL

T1 -0.114 0.060 0.417∗ 0.469∗∗∗

(-0.57) (0.28) (1.87) (2.59)
T2 0.270 0.354 0.768∗ 0.081

(0.86) (1.25) (1.93) (0.39)
T3 0.921∗∗∗ 0.877∗∗∗ 0.019 0.484∗

(3.49) (3.84) (0.04) (1.86)
T1-T3 -1.035∗∗∗ -0.817∗∗ 0.398 -0.015

(-2.85) (-2.38) (0.69) (-0.05)
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Table A9: Testing Alternative Theories using OIV

This table presents the results of monthly regressions of |EHB|, EDGAR Downloads, or Effective
Spread on the measures of uncertainty. The |EHB| and Effective Spread analysis use pooled OLS
regressions. As EDGAR Downloads are a count measure, a pseudo-Poisson regression is used
instead of a pooled OLS regression. Columns 1, 3, and 5 include only Size as a control, and
columns 2, 4, and 6 add Firm Age and an indicator equal to one in earnings-announcement months.
Standard errors are clustered at the firm and month level. Statistical significance is denoted as
***, **, and * for p<0.10, p<0.05, and p<0.01, respectively. The sample period for |EHB| is from
January 1996 to December 2019 as OIV does not have observations prior to this. The sample for
EDGAR Downloads begins in April 2003 and ends in December 2017. The sample for Effective
Spread begins in September 2003 and ends in December 2019.

|EHB| EDGAR Downloads Eff. Spread

Size -0.097∗∗∗ -0.116∗∗∗ 0.623∗∗∗ 0.635∗∗∗ -2.720∗∗∗ -2.667∗∗∗

(-8.6) (-9.8) (8.9) (8.1) (-18.1) (-16.9)

MU 1.547∗∗∗ 1.408∗∗∗ -2.582∗∗∗ -2.528∗∗∗ 5.920∗∗∗ 6.200∗∗∗

(4.5) (4.3) (-5.6) (-6.0) (2.7) (2.8)

LN(OIV) 0.872∗∗∗ 0.969∗∗∗ 0.693∗∗∗ 0.666∗∗∗ 4.968∗∗∗ 4.789∗∗∗

(19.0) (19.1) (8.1) (11.3) (9.5) (9.3)

LN(Age) 0.122∗∗∗ -0.068 -0.323∗∗

(9.7) (-1.0) (-2.0)

Earn. Annc. 0.093∗∗∗ 0.145∗∗∗ 0.173
(7.6) (3.3) (0.7)

Observations 447100 447100 259430 259430 300314 300314
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Table A10: Testing Alternative Theories using AIA

This table presents the results of probit daily regressions of AIA on the measures of uncertainty.
AIA is an indicator equal to 1 when Bloomberg News Heat-Daily Max Readership Measure is 3–4
and 0 otherwise. Columns 1 and 3 include Size as a control and columns 2 and 4 add Firm Age and
an indicator equal to one in earnings-announcement months. All dependent variables are measured
at the monthly level. Standard errors are clustered at the firm and day level. Statistical significance
is denoted as ***, **, and * for p<0.10, p<0.05, and p<0.01, respectively. The sample period is
from March 2010 to December 2019.

(1) (2) (3) (4)

Size 0.284∗∗∗ 0.286∗∗∗ 0.279∗∗∗ 0.289∗∗∗

(54.6) (53.5) (50.7) (51.5)

EPU -0.001∗∗∗ -0.000∗∗∗

(-3.7) (-2.9)

LN(IVOL) 0.388∗∗∗ 0.386∗∗∗

(26.5) (24.9)

LN(Age) -0.004 -0.016∗∗

(-0.6) (-2.5)

Earn. Annc. 0.213∗∗∗ 0.249∗∗∗

(21.8) (25.3)

MU -1.866∗∗∗ -1.856∗∗∗

(-10.6) (-10.5)

LN(OIV) 0.372∗∗∗ 0.406∗∗∗

(22.0) (23.0)

Observations 4006685 4006685 3920270 3920270

C Appendix C: Derivations, Proofs, and Extension of the Model

C.1 Derivations and Proofs

Proof of Lemma 1
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Proof. The demand function can be written as

q̃sj =
1

γ
Σ̂−1

j

[
Ej(f̃)− p̃

]
=

1

γ
Σ̂−1

j

[
Γ−1µ+ Ej(z)− p̃

]
=

1

γ

[
Σ̂−1

j

(
Γ−1µ− p̃

)
+ Σ−1

ηj (z + (I− bj)B)
]

I is an N -dimension identical matrix, bj is a diagonal matrix with the i-th diagonal element
being bij. The aggregated demand is∫

q̃jdj =
1

γ

[
Σ̄−1

(
Γ−1µ− p̃

)
+

∫
Σ̂−1

ηj (z + (1− bj)B) dj

]
(A1)

where Σ̄−1 =
∫
Σ̂−1

j dj is the aggregate posterior precision matrix.
Since there is no heterogeneity among skilled investors, we study a symmetric equilib-

rium where every investor will choose the same level of de-biasing for a given stock, which
we denoted by a diagonal matrix b. The private signal variance will then be the same for
each skilled investor, which we denote by Ση = (I − b)Σ(I − b)′. The aggregate posterior
precision is Σ̄−1 = Σ−1 + Σ−1

η .
Applying the market clear condition 3 and matching the coefficients for the intercept

and different shocks, we get the following equations,

Σ̄−1(Γ−1µ− A0) = γx (A2)

−Σ̄−1Az + Σ−1
η = 0 (A3)

−Σ̄−1AB + Σ−1
η (I− b) = 0 (A4)

From the above equations we get A0 = Γ−1µ−γΣ̄x, Az = Σ̄Σ−1
η , and AB = Σ̄Σ−1

η (I−b).

Proof of Corollary 1

Proof. Define the excess return of a stock as re = f − Γp̃. Then

re = f − Γp̃

= γΓΣ̄x+ Γ(I − Az)z − ΓAz(I − b)B

= Γ
(
γΣ̄x+ Σ̄Σ−1z − Σ̄Σ−1

η (I − b)B
)

Given the matrix structure of Γ, each stock’s excess return can be written as a part that
loads on the market excess return, and a part that contingent on the shocks.
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Proof of Corollary 2

Proof. It’s obvious that ζBi > 0. It remains to prove that
dζBi
dbi

< 0. Note that

ζBi =
σ−1
ηi

σ−1
i + σ−1

ηi

(1− bi) =
1

σB
i

σi
(1− bi) +

1
1−bi

The equation holds because σηi = σB
i (1 − bi)

2. The denominator is increasing in bi since

the derivative −σB
i

σi
+ 1

(1−bi)2
≥ 0 due to

σB
i

σi
= ρ < 1. Therefore

dζBi
dbi

< 0: higher de-biasing

decreases the return predictability of analyst forecast bias.

Proof of Lemma 2

Proof. Put the expression of the demand function q̃j to U0j in Equation 5,

U0j = W0 + E0

[
q̃′jEj

(
f̃ − p̃

)
− γ

2
q̃′jVj

(
f̃ − p̃

)
q̃j
]
−

n∑
i=1

cij

= W0 +
1

γ
E0

[(
Ej(f̃)− p̃

)′
Σ̂−1

j

(
Ej(f̃)− p̃

)
− 1

2

(
Ej(f̃)− p̃

)′
Σ̂−1

j Σ̂jΣ̂
−1
j

(
Ej(f̃)− p̃

)]
−

n∑
i=1

cij

= W0 +
1

2γ
E0

[(
Ej(f̃)− p̃

)′
Σ̂−1

j

(
Ej(f̃)− p̃

)
]
]
−

n∑
i=1

cij

Note that Ej(f̃) − p̃ is normally distributed. Thus U0j is an expectation of a non-central
χ2-distributed random variable. This equals

U0j = W0 +
1

2γ

[
Trace

[
Σ̂−1

j V0

(
Ej(f̃)− p̃

)]
+ E0

(
Ej(f̃)− p̃

)′
Σ̂−1

j E0

(
Ej(f̃)− p̃

)]
−

n∑
i=1

cij

= W0 +
1

2γ

[
Trace

[
Σ̂−1

j V0

(
f̃ − p̃

)
− I

]
+ γ2x′Σ̄′Σ̂−1

j Σ̄x
]
−

n∑
i=1

cij

where Trace(·) is the trace of a matrix. The second equality applies the Law of Total

Variance V0

(
Ej

(
f̃
)
− p̃
)
= V0

(
f̃ − p̃

)
− E0

(
Vj

(
f̃j − p̃

))
= V0

(
f̃ − p̃

)
− Σ̂j Note that

V ≡ V0

(
f̃ − p̃

)
= (I − Az)Σ(I − Az)

′ + ABΣA
′
B

= Σ̄
[
Σ−1 + Σ−1

η (I − b)Σ(I − b)Σ−1
η

]
Σ̄′

= Σ̄
[
Σ−1 + Σ−1

η

]
Σ̄′

= Σ̄

The ith diagonal element of V is then the posterior variance σ̄i. Given the diagonal nature
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of the problem, the ex-ante expected utility is given by

U0j =W0 +
1

2γ

n∑
i=1

(
τi + τ ηij

)
σ̄i −

n

2γ
+

1

2γ

n∑
i=1

γ2σ̄2
i x

2
i

(
τi + τ ηij

)
−

n∑
i=1

cij

=constant+
1

2γ

n∑
i=1

τ ηij
(
σ̄i + γ2σ̄2

i x
2
i

)
−

n∑
i=1

cij

=constant+
n∑

i=1

λi
τ ηij
τBi

−
n∑

i=1

κi
2

(
τ ηij
τBi

− 1

)2

where λi =
1

2γσB
i
(σ̄i + γ2σ̄2

i x
2
i ).

The time-0 expected utility is a quadratic function on the relative precision of the de-

biased signal
τηij
τBi

. The marginal benefit of increasing relative signal precision is a constant

given by λi. Given the quadratic information cost in Equation 4. The optimal learning

decision is given by τ ηij = τBi

(
1 + λi

κi

)
. Note that

τηij
τBi

= 1
(1−bij)2

, the optimal level of de-

biasing is bij = 1−
√

κi

λi+κi
.

Proof of Corollary 3

Proof. Note that λi =
1

2γσB
i
(σ̄i + σ̄2

i γ
2x2i ) and the posterior σ̄i =

1
τηi +τi

=
σB
i

θi+ρ
. Therefore,

the marginal benefit λi can be expressed as a function on θi as follows

λi =
1

2γ

(
1

θi + ρ
+

σB
i

(θi + ρ)2
γ2x2i

)
Clearly, dλi

dθi
< 0. Given that θi =

1
(1−bi)2

is positively related to the de-biasing level bi, we

get dλi

dbi
< 0.

Proof of Proposition 1

Proof. We first prove that the de-biasing level is decreasing in the intrinsic volatility, i.e.,
dbi
dσF

i
< 0. This is equivalent to show that the relative signal precision θi is decreasing in σF

i ,

since there is a positive monotonic relationship between θi and bi given by θi =
1

(1−bi)2
. Note

that the equilibrium is determined by solving the fixed-point problem:

f(θi) = κi(θi − 1)− λi = 0
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Applying the Implicit Function Theorem,

dθi
dσF

i

= −∂f/∂σ
F
i

∂f/∂θi
= −

ψ(θi − 1)− ∂λi

∂σF
i

κi − ∂λi

∂θi

(A5)

According to the proof of Corollary 3, ∂λi

∂θi
< 0. Therefore the denominator in Equation

A5 is positive.
Examining the numerator in Equation A5, note that

∂λi
∂σF

i

=
1

2

ρ

(θi + ρ)2
γx2i

The equation holds because σB
i = ρσi = ρ(σF

i + σS
i ). In addition, ψ(θi − 1) = κi(θi−1)

σF
i

= λi

σF
i
.

Thus the numerator can be written as

λi
σF
i

− ∂λi
∂σF

i

=
1

2γσF
i

1

θi + ρ
+

1

2

ρ

(θi + ρ)2
σS
i

σF
i

γx2i > 0

Thus the numerator in Equation A5 is positive.
Overall, we get dθi

dσF
i
< 0 and therefore dbi

dσF
i
< 0, i.e., higher intrinsic uncertainty decreases

de-biasing level. According to Corollary 2, return predictability is decreasing with the de-

biasing level unconditionally,
dζBi
dbi

< 0. Thus
dζBi
dσF

i
> 0. Higher intrinsic uncertainty increases

return predictability of the analyst forecast bias.

Proof of Proposition 2

Proof. The proof follows the same strategy as that of Proposition 1. We first prove that
dθi
dσS

i
> 0. Applying the Implicit Function Theorem,

dθi
dσS

i

= −∂f/∂σ
S
i

∂f/∂θi
=

∂λi

∂σS
i

κi − ∂λi

∂θi

(A6)

We have shown in the proof of Proposition 1 that the denominator in equation (A6) is

positive. Given λi =
1
2γ

(
1

θi+ρ
+

σB
i

(θi+ρ)2
γ2x2i

)
and σB

i = ρ(σF
i + σS

i ), then

∂λi
∂σS

i

=
1

2

ρ

(θi + ρ)2
γx2i > 0

Therefore the numerator in equation (A6) is positive. Overall we show that dθi
dσS

i
> 0 and
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therefore dbi
dσS

i
> 0. That is, higher temporal uncertainty encourages de-biasing. According

to Corollary 2, it is immediate that
dζBi
dσS

i
< 0, higher temporal uncertainty decreases return

predictability.

Proof of Proposition 3

Proof. We first prove that more de-biasing increases the price efficiency, that is,
dAz,i

dbi
< 0.

Note that

Az,i =
τ ηi

τ ηi + τi
=

1

1 + ρ(1− bi)2

The equation holds because ση
i = σB

i (1 − bi)
2 and σB

i = ρσi. Therefore
dAz,i

dbi
> 0, that is,

higher de-biasing leads to more precise signals and stronger price sensitivity to fundamental
shocks (higher price efficiency).

According to the proof in Proposition 1 and Proposition 2, higher σF
i (σS

i ) decreases
(increases) de-biasing level and therefore decreases (increases) price efficiency. Note that
ζzi = 1− Az,i, the opposite holds for the fundamental-based return anomaly.

69



C.2 Extension

C.2.1 Generalized Model Setup

In this section, we present the fully specified model where we have both informed and un-
informed investors and supply noise, consistent with the standard information choice model
in the literature. In the fully-specified model, we adopt the same asset payoff structure, pref-
erences, and the de-biasing process and cost functions in the simplified model. In addition,
we maintain two key structures. First, the variance of analyst’s forecast bias is proportional
to the prior variance, σB

i = ρσi where ρ < 1; Second, the information cost parameter is pro-
portional to the intrinsic uncertainty κi = ψσF

i . The generalization comes from the following
two aspects.

First, we assume stochastic supply of factors, denoted by x̄i + xi for factor i, where x̄ is
a vector of the fixed supply and x ∼ N(0,Σx) being the noisy supply vector with a diagonal
variance-covariance matrix given by Σx. The supply for asset is then Γ−1(x̄ + x). As in
the literature, the random supply is to prevent price from fully revealing the information of
informed investors. Therefore each investor will use price as a public signal to update belief
on the distribution of the fundamentals.

Second, we assume a fraction χ of investors are skilled, that is, they can reduce the
variance of analyst’s forecast bias through information acquisition. A 1 − χ fraction of
investors are unskilled, their only signal is the public price signal obtained with no cost.
Following this strand of literature, we conjecture and prove a linear functional form of the
price, so that the price is a linear unbiased signal on the fundamental shock z, i.e., ηp =
z+ ϵp. The signal noise is distributed as N(0,Σp), where Σp is the diagonal variance matrix
determined in equilibrium.

Posteriors Based on the private and the public signals, an investor updates her beliefs
about the factors by forming a Bayesian posterior with mean and variance. We present the
posteriors for skilled and unskilled investors separately. Given the homogeneity of skilled
investors, equilibrium will besymmetric, i.e., every skilled investor will choose the same level
of de-biasing for a given factor. In this case, all skilled investors get the same private signal,
and the price signal is a noisier version of this signal (as shown later, εpi = εi − γσ̄ηixi).
This is a key difference between our model with traditional information choice model, where
skilled investors’ signals are independent. Therefore, a skilled (unskilled) investor updates
her belief based on the private (public price) signal. See below,

For skilled investors: µ̂j ≡ Ej [z|ηj, ηp] = Ej [z|ηj] = Σ̂jΣ
−1
ηj ηj, Σ̂−1

j = Σ−1 + Σ−1
ηj

For unskilled investors: µ̂j ≡ Ej [z|ηp] = Σ̂jΣ
−1
p ηp, Σ̂−1

j = Σ−1 + Σ−1
p

where ηj is a vector of signals that a skilled investor j obtains through de-biasing, the i-th
element, ηij = zi+(1−bij)Bi where bij is the de-biasing levels and Bi is analyst’s forecast bias
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for factor i. Σ̂j is investor j’s posterior variance on the factors z. From time-0 perspective,

µ̂ is normally distributed with zero mean and variance-covariance matrix V0 [µ̂j] = Σ − Σ̂j

according to the law of total variance.
In the symmetric equilibrium, the aggregate posterior precision is Σ̄−1 =

∫
Σ̂−1

j dj =

Σ−1 + Σ̄−1
η + Σ̄−1

p , where Σ̄−1
η =

∫
Σ−1

ηj dj = χΣs−1

η where Σs−1

η is the common signal precision

for all skilled investors, and Σ̄−1
p = (1− χ)Σ−1

p is the aggregated price signal precision.

C.2.2 Solutions

We solve the model backward. First, we solve the portfolio optimization problem at
t = 1, taking the information acquisition and posterior beliefs as given. In this step, we
can also derive the equilibrium price. In the second step, we derive the optimal information
acquisition problem and produce propositions about the relation between uncertainty and
information acquisition.

Portfolio allocation The optimization problem is given by

max
q̃j

U1j = Ej [Wj]− γ
2
Vj [Wj]

s.t. Wj = W0 + q̃j
′(f̃ − p̃)

which gives the solution

q̃j =
1

γ
Σ̂−1

j

[
Ej(f̃)− p̃

]
(A7)

Then we plugin this demand function to the market clear condition,
∫
q̃jdj = x + x, and

obtains the following Lemma.

Lemma A1. The equilibrium price of the factors is

p̃ = A0 + Azz + ABB + Axx

where
A0 = Γ−1µ− γΣ̄x̄

Az = I − Σ̄Σ−1

AB = Az(I − bs)

Ax = −γΣ̄
(
I + Σ̄−1

p Σ̄η

)
bs, Σ̄, Σ̄η, and Σ̄p are given below in the proof.
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Proof. For skilled investors, the demand function can be written as

q̃sj =
1

γ
Σ̂−1

j

[
Ej(f̃)− p̃

]
=

1

γ
Σ̂−1

j

[
Γ−1µ+ Ej(z)− p̃

]
=

1

γ

[
Σ̂−1

j

(
Γ−1µ− p̃

)
+ Σ−1

ηj (z + (1− bj)B)
]

bj is a diagonal matrix with the i-th diagonal element being bij. For unskilled investors, they
depends on the public price signal. With the guessed form p̃ = A0 + Azz + ABB + Axx,
the price signal is given by ηp = A−1

z (p̃− A0) = z + A−1
z ABB + A−1

z Axx. Thus, demand for
unskilled investor is given by

q̃uj =
1

γ

[
Σ̂−1

j

(
Γ−1µ− p̃

)
+ Σ−1

p (z + A−1
z ABB + A−1

z Axx))
]

The price signal variance is Σp = A−1
z ABΣBA

′
BA

′−1
z + A−1

z AxΣxA
′
xA

′−1
z . The aggregated

demand is∫
q̃jdj =

1

γ

[
Σ̄−1 (Γ−1µ− p̃

)
+

∫
Σ̂−1

ηj (z + (1− bj)B) dj + (1− χ)Σ−1
p (z +A−1

z ABB +A−1
z Axx))

]
(A8)

where Σ̄−1 =
∫
Σ̂−1

j dj is the aggregate posterior precision matrix.
Since there is no heterogeneity among skilled investors, we study a symmetric equilib-

rium where every skilled investor will choose the same level of de-biasing for a given stock,
which we denoted by a diagonal matrix bs. The private signal variance will then be the
same for each skilled investor, which we denote by Σs

η = (I − bs)ΣB(I − bs)′. Given that
unskilled investors do not de-bias analyst forecasts, we can get the aggregate precision of
private signal as Σ̄−1

η ≡
∫
Σ̂−1

ηj dj = χΣs−1

η . Denote the aggregate price signal precision as

Σ̄−1
p = (1− χ)Σ−1

p , then the aggregate posterior precision is Σ̄−1 = Σ−1 + Σ̄−1
η + Σ̄−1

p .

Applying the market clear condition where aggregated demand equals supply,
∫
q̃jdj =

x̄+x, and matching the coefficients for the intercept and different shocks, we get the following
equations,

Σ̄−1(Γ−1µ− A0) = γx̄ (A9)

−Σ̄−1Az + Σ̄−1
η + Σ̄−1

p = 0 (A10)

−Σ̄−1AB + Σ̄−1
η (I − bs) + Σ̄−1

p A−1
z AB = 0 (A11)

−Σ̄−1Ax + Σ̄−1
p A−1

z Ax = γIn (A12)

We solve the above equations as follows. From Equation A9 and A10 we get A0 = Γ−1µ−γΣ̄x̄
and Az = Σ̄(Σ̄−1

η + Σ̄−1
p ) = I − Σ̄Σ−1. Multiplying Equation A10 by A−1

z AB on the right

and subtracting by Equation A11, we get Σ̄−1
η A−1

z AB = Σ̄−1
η (I − bs). Since the posterior

72



precision matrix is non-singular, we have AB = Az(I − bs). Lastly, multiplying Equation
A10 by A−1

z Ax on the right and subtracting by Equation A12, we get Σ̄−1
η A−1

z Ax = −γIn or

Ax = −γAzΣ̄η = −γΣ̄(I + Σ̄−1
p Σ̄η).

Lastly, we derive the expression for the price signal variance Σp,

Σp = A−1
z ABΣBA

′
BA

′−1
z + A−1

z AxΣxA
′
xA

′−1
z

= (I − bs)ΣB(I − bs)′ + γ2Σ̄ηΣxΣ̄
′
η

= Σs
η + γ2Σ̄ηΣxΣ̄

′
η

= χΣ̄η + γ2Σ̄ηΣxΣ̄
′
η (A13)

Lemma A1 shows that the equilibrium price is a linear function on the fundamental
shocks z, analysts’ bias B and the noise in the supply x. As in the simplified model, the
price loading on analysts’ bias, AB, is proportional to that on the fundamental shock, Az,,
with the proportion being I − bs, i.e., the investors’ de-biasing level. When investors fully
de-bias analyst forecasts (bs = 1), the price is not related to the bias. In contrast, if investors
do not de-bias analyst forecasts at all (bs = 1), the price respond to the bias as much as it
would to the fundamental shock.

Lemma A1 also tells us the excess returns of each stock, defined by re = f − Γp̃.
Specifically, we derive the following corollary.

Corollary A1. The excess return of stock i is

rei = γσ̄ix̄i + βir
e
n + ζzi zi − ζBi Bi + ζxi xi, ∀i = 1, · · · , n− 1 (A14)

ren = γσ̄nx̄n + ζznzn − ζBn Bn + ζxnxn

where

ζzi = σ̄i

σi

ζBi =
(
1− σ̄i

σi

)
(1− bsi )

ζxi = γσ̄i(1 + σ̄−1
p σ̄η)

Proof.

re = f − Γp̃

= γΓΣ̄x̄+ Γ(I − Az)z − ΓAz(I − bs)B − ΓAxx

= Γ
(
γΣ̄x̄+ Σ̄Σ−1z − (I − Σ̄Σ−1)(I − bs)B + γΣ̄

(
I + Σ̄−1

p Σ̄η

)
x
)

Given the matrix structure of Γ, each stock’s excess return can be written as a part that
loads on the market excess return, and a part that contingent on the shocks.
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Corollary A1 shows that the excess return of a stock depends on three part: (i) a
constant determined by its idiosyncratic volatility and supply; (ii) a part that depends on
the market excess return and its exposure; and (iii) three shocks with stock-specific loadings.
Specifically, the model implies that when analysts’ bias predicts returns negatively, consistent
with the empirical findings. The predictability is weaker for stock with more information
acquisition (i.e., higher b) as shown in the following corollary.

Corollary A2. The analysts’ bias Bi negatively predict stock excess return. If χ is suffi-
ciently large, the predictability is decreasing with the de-biasing activity bsi .

Proof. Note that

ζBi =

(
1− σ̄i

σi

)
(1− bsi ) =

σ̄−1
ηi + σ̄−1

pi

σ−1 + σ̄−1
ηi + σ̄−1

pi

(1− bsi ) =
1 +

σ̄ηi

σ̄pi

σ̄ηi

σi
+ 1 +

σ̄ηi

σ̄pi

(1− bsi )

where σ̄ηi =
1
χ
σB
i (1− bsi )

2 and σ̄pi =
1

1−χ

(
χσ̄ηi + γ2σxiσ̄

2
ηi

)
. In addition, given σB

i = ρσi, we

obtain

ζBi =
1 + 1−χ

χ+γ2σxiσ̄ηi

ρ
χ
(1− bsi )

2 + 1 + 1−χ
χ+γ2σxiσ̄ηi

(1− bsi ) =
1

ρ
χ

χ+γ2σxiσ̄ηi

1+γ2σxiσ̄ηi
(1− bsi ) +

1
1−bsi

(A15)

Denote g(bsi ) ≡
ρ
χ

χ+γ2σxiσ̄ηi

1+γ2σxiσ̄ηi
. We show that the denominator in Equation A15 is increasing in

bsi when χ is large enough. Note that the derivative of the denominator with respect to bsi is

given by −g(bsi ) + 1
(1−bsi )

2 +
dg(bsi )

dbsi
(1− bsi ) where

dg(bsi )

dbsi
=
ρ(1− χ)

χ

γ2σxi
dσ̄ηi

dbsi

(1 + γ2σxiσ̄ηi)2
= −ρ(1− χ)

χ2

2γ2σxiσ
B
i (1− bsi )

(1 + γ2σxiσ̄ηi)2

Now, when χ is sufficiently high (i.e., close to 1), this derivative converges to zero. In
addition, g(bsi ) will converge to ρ < 1. Note that 1

(1−bsi )
2 ≥ 1. Therefore, there exist a χ∗

such that when χ > χ∗, −g(bsi ) + 1
(1−bsi )

2 +
dg(bsi )

dbsi
(1 − bsi ) > 0. That is, the denominator in

Equation A15 is increasing in bsi , and thus the return predictability is decreasing in bsi .

Information decision At t = 0, investors choose posterior precision of the the de-biased
through information acquisition to maximize time-0 expected utility U0j.

The proof of Lemma A2 shows that the time-0 utility can be written as the following
form

U0j = constant+
n∑

i=1

(
λi
τ ηij
τBi

− κi
2

(
τ ηij
τBi

− 1

)2
)

(A16)
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where λi is the marginal benefit of increasing relative signal precision (de-biasing), which
depends on the aggregate posterior variances. Importantly, λi does not depend on investor
j’s decision, since any investor is atomic and cannot affect the aggregate posterior variances.
Then the optimization problem is quite straightforward: each skilled investor chooses an
optimal level of τ ηij for each stock to maximize her utility in Equation A16. Then we reach
the following lemma on optimal information acquisition.

Lemma A2. An skilled investor j choose the optimal signal precision of de-biased signal as
follows

τ ηij = τBi

(
1 +

λi
κi

)
(A17)

where

λi =
1

2γσB
i

(
(1− χ)σ̄i + σ̄2

i

[
σ̄−1
ηi + χσ−1

i + γ2(σxi + x̄2i )
])

(A18)

Proof. Put the expression of the demand function q̃j to U0j,

U0j = W0 + E0

[
q̃′jEj

(
f̃ − p̃

)
− γ

2
q̃′jVj

(
f̃ − p̃

)
q̃j
]
−

n∑
i=1

cij

= W0 +
1

γ
E0

[(
Ej(f̃)− p̃

)′
Σ̂−1

j

(
Ej(f̃)− p̃

)
− 1

2

(
Ej(f̃)− p̃

)′
Σ̂−1

j Σ̂jΣ̂
−1
j

(
Ej(f̃)− p̃

)]
−

n∑
i=1

cij

= W0 +
1

2γ
E0

[(
Ej(f̃)− p̃

)′
Σ̂−1

j

(
Ej(f̃)− p̃

)
]
]
−

n∑
i=1

cij

Note that Ej(f̃)− p̃ is normally distributed. Thus U0j is an expectation of a non-central
χ2-distributed random variable. According to Van Nieuwerburgh and Veldkamp (2010), this
equals

U0j = W0 +
1

2γ

[
Trace

[
Σ̂−1

j V0

(
Ej(f̃)− p̃

)]
+ E0

(
Ej(f̃)− p̃

)′
Σ̂−1

j E0

(
Ej(f̃)− p̃

)]
−

n∑
i=1

cij

= W0 +
1

2γ

[
Trace

[
Σ̂−1

j V0

(
f̃ − p̃

)
− I

]
+ γ2x̄′Σ̄′Σ̂−1

j Σ̄x̄
]
−

n∑
i=1

cij

where Trace(·) is the trace of a matrix. The second equality applies the Law of Total
Variance,

V0

(
Ej

(
f̃
)
− p̃
)
= V0

(
f̃ − p̃

)
− E0

(
Vj

(
f̃j − p̃

))
= V0

(
f̃ − p̃

)
− Σ̂j
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Note that

V ≡ V0

(
f̃ − p̃

)
= (I − Az)Σ(I − Az)

′ + ABΣBA
′
B + AxΣxA

′
x

= (I − Az)Σ(I − Az)
′ + AzΣpA

′
z

= Σ̄
[
Σ−1 + (Σ̄−1

p + Σ̄−1
η )Σp(Σ̄

−1
p + Σ̄−1

η )′
]
Σ̄′

= Σ̄
[
Σ−1 + (1− χ)Σ̄−1

p + 2(1− χ)Σ̄−1
η + Σ̄−1

η ΣpΣ̄
′−1

η

]
Σ̄′

= Σ̄
[
χΣ−1 + (1− χ)Σ̄−1 + (1− χ)Σ̄′−1

η + χΣ̄′−1

η + γ2Σx

]
Σ̄′

= Σ̄
[
χΣ−1 + (1− χ)Σ̄−1 + Σ̄′−1

η + γ2Σx

]
Σ̄′

where Az, AB, and Ax are given in Lemma A1. The ith diagonal element of V is then

Vii = (1− χ)σ̄i + σ̄2
i

[
σ̄−1
ηi + χσ−1

i + γ2σxi
]

Given the diagonal nature of the problem, the ex-ante expected utility is given by

U0j =W0 +
1

2γ

n∑
i=1

(
σ−1
i + τ ηij + σ̄−1

pi

)
Vii −

n

2γ
+

1

2γ

n∑
i=1

γ2σ̄2
i x̄

2
i

(
σ−1
i + τ ηij + σ̄−1

pi

)
−

n∑
i=1

cij

=constant+
1

2γ

n∑
i=1

τ ηij
(
Vii + γ2σ̄2

i x̄
2
i

)
−

n∑
i=1

cij

=constant+
n∑

i=1

λi
τ ηij
τBi

−
n∑

i=1

κi
2

(
τ ηij
τBi

− 1

)2

where λi =
1

2γσB
i
(Vii + γ2σ̄2

i x̄
2
i ).

The time-0 expected utility is a linear function on the precision of the de-biased signal
τ ηij with a quadratic information cost. Therefore the optimal learning decision is given by

τ ηij = τBi (1 + λi

κi
).

The equilibrium is such that skilled investors choose the same de-baised signal precision
τ ηij following Equation A17 where λi satisfies Equation A18, which is determined by investors’

aggregated signal precision. Denote θi =
τηij
τBi

=
τ̄ηi
χτBi

as skilled investors’ relative signal

precision, the equilibrium is characterized by the fixed-point problem below

f(θi) ≡ κi (θi − 1)− λi = 0 (A19)
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C.2.3 Implications

Corollary A3. The marginal benefit of increasing relative signal precision, λi, is decreasing
in the de-biasing level bsi .

Proof. Note that the aggregated signal precision is increasing in the de-biasing level τ̄ηi =
χ

σB
i (1−bsi )

2 . Therefore, to show that dλi

dbsi
> 0 we show the equivalent statement dλi

dτ̄ηi
> 0 Note

that λi can be writen as

λi =
1

2γσB
i

(1− χ)τ̄i + γ2(σxi + x̄2i ) + τ̄ηi + χτi
τ̄ 2i

where τ̄i = σ̄−1
i and τ̄ηi = σ̄−1

ηi . Then it can be shown that

dλi

dτ̄ηi
=

1

2γσB
i

(
(1− χ) dτ̄i

dτ̄ηi
+ 1

)
τ̄2
i − 2τ̄i

dτ̄i
dτ̄ηi

(
(1− χ)τ̄i + γ2(σxi + x̄2

i ) + τ̄ηi + χτi
)

τ̄4
i

=
1

2γσB
i

(
(1− χ) dτ̄i

dτ̄ηi
+ 1

)
τ̄i − 2 dτ̄i

dτ̄ηi

(
τ̄i + γ2(σxi + x̄2

i ) + (1− χ)τ̄ηi − χτ̄pi
)

τ̄3
i

=
1

2γσB
i

−
(
(1 + χ) dτ̄i

dτ̄ηi
− 1

)
τ̄i − 2 dτ̄i

dτ̄ηi
γ2(σxi + x̄2

i )− 2 dτ̄i
dτ̄ηi

((1− χ)τ̄ηi − χτ̄pi)

τ̄3
i

The numerator above is negative because (i) dτ̄i
dτ̄ηi

> 1, and (ii) (1 − χ)τ̄ηi > χτ̄pi. We

prove below.

(i) Using the relation σ̄pi =
1

1−χ

(
χσ̄ηi + γ2σxiσ̄

2
ηi

)
, we can get

dσ̄−1
pi

dσ̄−1
ηi

=
dσ̄pi
dσ̄ηi

σ̄2
ηi

σ̄2
pi

= (1− χ)
χ+ 2γ2σxiσ̄ηi

(χ+ γ2σxiσ̄ηi)
2 > 0 (A20)

Thus dτ̄i
dτ̄ηi

= 1 +
dτ̄pi
dτ̄ηi

> 1.

(ii) Given that
(1− χ)τ̄ηi − χτ̄pi = (1− χ)χ

(
σ−1
ηi − σ−1

pi

)
> 0

The inequality holds because the price signal is less precise than the private signal, that
is, 1

σηi
> 1

σpi
= 1

σηi+γ2σxiσ̄2
ηi
.

Proposition A1. If χ is sufficiently large, a higher intrinsic uncertainty σF
i lowers de-

biasing activity (less information acquisition) and increases return predictability of analysts’
forecast biases

77



Proof. We first prove that the de-biasing level is decreasing in the intrinsic volatility, i.e.,
dbi
dσF

i
< 0. This is equivalent to show that the relative signal precision θi is decreasing in σF

i ,

since there is a positive monotonic relationship between θi and bi given by θi =
1

(1−bi)2
. Note

that the equilibrium is determined by solving the fixed-point problem:

f(θi) = κi(θi − 1)− λi = 0

Applying the Implicit Function Theorem,

dθi
dσF

i

= −∂f/∂σ
F
i

∂f/∂θi
= −

ψ(θi − 1)− ∂λi

∂σF
i

κi − ∂λi

∂θi

=

∂λi

∂σF
i
− λi

σF
i

κi − ∂λi

∂θi

(A21)

According to the proof of Corollary A3, if χ is sufficiently large, ∂λi

∂bsi
< 0 and thus

∂λi

∂θi
< 0. Therefore the denominator in Equation A21 is positive.
We will now prove that if χ is large enough, the numerator in Equation A21 is negative.

Note that λi can be written as

λ =
1

2γ

(
(1− χ)

σ̄i
σB
i

+

(
σ̄i
σB
i

)2 [
σB
i

σ̄ηi
+ χ

σB
i

σi
+ γ2(σxi + x̄2i )ρσi

])

Also note that σB
i = ρσi and σ̄ηi =

1
χ
σB
i (1− bsi )

2. Thus Qi ≡ σB
i

σ̄ηi
+ χ

σB
i

σi
does not depend on

σ. Denote

Pi ≡
σ̄i
σB
i

=
σB−1

i

σ−1
i + σ̄−1

ηi + σ̄−1
pi

=
1

ρ+ χ(1− bsi )
−2 + 1−χ

(1−bsi )
2+γ2σxiρσi(1−bsi )

4/χ2

and Ci ≡ ργ2(σxi + x̄2i ) Then λi can be written as

λi =
1

2γ

(
(1− χ)Pi + P 2

i (Qi + Ciσi)
)

Note that σi = σF
i + σS

i , thus

∂λi
∂σF

i

=
∂λi
∂σi

=
1

2γ

(
(1− χ)

∂Pi

∂σi
+ 2Pi

∂Pi

∂σi
(Qi + Ciσi) + P 2

i Ci

)
where

∂Pi

∂σi
= P 2

i

(1− χ)γ2σxiρ(1− bsi )
4/χ2

((1− bsi )
2 + γ2σxiρσi(1− bsi )

4/χ2)2
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Note that the numerator in Equation A21 is

∂λi
∂σF

i

− λi
σF
i

=
1

2γ

(
(1− χ)

(
∂Pi

∂σi
− Pi

σF
i

)
+ 2Pi

∂Pi

∂σi
(Qi + Ciσi)−

P 2
i Qi

σF
i

)
(A22)

If χ is large enough, then ∂Pi

∂σi
will be close to zero. Thus there exist a cutoff χ∗, when

χ > χ∗, Equation A22 is negative. Given that the denominator is positive, this means that
dθi
dσF

i
< 0 and

dbsi
dσF

i
< 0.

Next, we prove that
dζBi
dσF

i
> 0. Note that

dζBi
dσF

i

=
∂ζBi
∂bsi

dbsi
dσF

i

+
∂ζBi
∂σF

i

According to Corollary A2,
∂ζBi
∂bsi

< 0, and we have proved
dbsi
dσF

i
< 0. To derive

∂ζBi
∂σF

i
, first note

that

ζBi =

(
1− σ̄i

σi

)
(1− bsi ) =

(
1− σ−1

i

σ−1
i + σ̄−1

ηi + σ̄−1
pi

)
(1− bsi )

=

1− ρ

ρ+ χ(1− bsi )
−2 + (1−χ)χ2

(1−bsi )
2+γ2σxiρσi(1−bsi )

4

 (1− bsi )

Therefore, all else equal, ζBi is decreasing in σi, thus
∂ζBi
∂σF

i
=

∂ζBi
∂σi

< 0. However, if χ is

sufficiently large, this partial derivative is converging to zero. Therefore, if χ is large enough,
dζBi
dσF

i
> 0: the return predictability is increasing in the intrinsic uncertainty σF

i .

Proposition A2. If χ is sufficiently large, a higher temporal uncertainty σS
i increases de-

biasing activity (more information acquisition) and decreases return predictability of analysts’
forecast biases

Proof. The proof follows the same strategy as that of Proposition A1. We first prove that
dθi
dσS

i
> 0. Applying the Implicit Function Theorem,

dθi
dσS

i

= −∂f/∂σ
S
i

∂f/∂θi
=

∂λi

∂σS
i

κi − ∂λi

∂θi

(A23)

We have shown in the proof of Proposition A1 that the denominator in Equation A23 is
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positive. In addition,

∂λi
∂σS

i

=
∂λi
∂σi

=
1

2γ

(
(1− χ)

∂Pi

∂σi
+ 2Pi

∂Pi

∂σi
(Qi + Ciσi) + P 2

i Ci

)
Note that ∂Pi

∂σi
> 0 and P 2

i Ci > 0. Therefore, ∂λi

∂σS
i
> 0 and thus dθi

dσS
i
> 0 and

dbsi
dσS

i
> 0.

Next, we prove that
dζBi
dσS

i
< 0. Note that

dζBi
dσS

i

=
∂ζBi
∂bsi

dbsi
dσS

i

+
∂ζBi
∂σS

i

According to Corollary A3, if χ is sufficiently large,
∂ζBi
∂bsi

< 0, and we have proved
dbsi
dσS

i
> 0

above. In addition, in the proof of Proposition A1, we show that
∂ζBi
∂σi

< 0 and thus
∂ζBi
∂σS

i
< 0.

Therefore, if χ is large enough,
dζBi
dσS

i
< 0: the return predictability is increasing in the intrinsic

uncertainty σS
i .

Proposition A3. If χ is sufficiently large, a higher intrinsic (temporal) uncertainty de-
creases (increases) the price efficiency, as measured by the price response to the fundamental
shock, Az,i, and increases (decreases) the fundamental-based return anomaly, as measured by
the return predictability of the fundamental shock, ζzi .

Proof. We first prove for σF
i . Note that

dAz,i

dσF
i

=
∂Az,i

∂bsi

dbsi
dσF

i

+
∂Az,i

∂σF
i

Note that

Az,i = 1− σ−1
i

σ̄−1
i

= 1− ρ

ρ+ χ(1− bsi )
−2 + (1−χ)χ2

(1−bsi )
2+γ2σxiρσi(1−bsi )

4

Thus
∂Az,i

∂bsi
> 0 and

∂Az,i

∂σF
i
< 0. In addition,

dbsi
dσF

i
< 0 according to Proposition A1. Thus

dAz,i

dσF
i
< 0.

For σS
i ,

dAz,i

dσS
i

=
∂Az,i

∂bsi

dbsi
dσS

i

+
∂Az,i

∂σS
i

where
∂Az,i

∂bsi
> 0,

dbsi
dσS

i
> 0 , and

∂Az,i

∂σS
i
< 0. But note that when χ is sufficiently large,

∂Az,i

∂σS
i

→ 0.

Therefore, there exist a χ∗, when χ > χ∗,
dAz,i

dσS
i
> 0.
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Note that ζzi = 1−Az,i, the opposite of the above predictions holds for the fundamental-
based return anomaly.
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